Measurement of $\phi$-meson production in Cu$+$Au at $\sqrt{s_{_{NN}}}=200$ GeV and U$+$U at $\sqrt{s_{_{NN}}}=193$ GeV

The PHENIX collaboration
2022.

Abstract (data abstract)
The PHENIX experiment reports systematic measurements at the Relativistic Heavy Ion Collider of $\phi$-meson production in asymmetric Cu$+$Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV and in U$+$U collisions at $\sqrt{s_{_{NN}}}$ = 193 GeV. Measurements were performed via the $\phi\rightarrow K^{+}K^{-}$ decay channel at midrapidity $|\eta|<0.35$. Features of $\phi$-meson production measured in Cu$+$Cu, Cu$+$Au, Au$+$Au, and U$+$U collisions were found to not depend on the collision geometry, which was expected because the yields are averaged over the azimuthal angle and follow the expected scaling with nuclear overlap size. The elliptic flow of the $\phi$ meson in Cu$+$Au, Au$+$Au, and U$+$U collisions scales with second order participant eccentricity and the length scale of the nuclear overlap region (estimated with the number of participating nucleons). At moderate $p_T$, $\phi$-meson production measured in Cu$+$Au and U$+$U collisions is consistent with coalescence-model predictions, whereas at high $p_T$ the production is in agreement with expectations for in-medium energy loss of parent partons prior to their fragmentation. The elliptic flow for $\phi$ mesons measured in Cu$+$Au and U$+$U collisions is well described by a (2+1)D viscous-hydrodynamic model with specific-shear viscosity $\eta/s=1/4\pi$.

Loading Data...