Search for pair production of third-generation scalar leptoquarks and top squarks in proton-proton collisions at sqrt(s) = 8 TeV

The CMS collaboration
Phys.Lett.B 739 (2014) 229-249, 2014.

Abstract (data abstract)
CERN-LHC. Search for pair production of third-generation scalar leptoquarks and top squarks in proton-proton collisions at $\sqrt{s}$ = 8 TeV using 19.7 inverse femtobarns of data collected with the CMS detector. The leptoquark search considers each leptoquark decaying to a tau lepton and a bottom quark, or each top squark decaying via an R-parity violating coupling $\lambda^{\prime}_{333}$ to a tau lepton and a bottom quark. The top squark search considers top squarks undergoing a chargino-mediated decay involving the R-parity violating coupling $\lambda^{\prime}_{3jk}$, each decaying to a tau lepton, a bottom quark, and two light quarks. Errata: 17 JUN 2015: Fixed one typo from the paper: systematic uncertainties on the $M_{\text{LQ}}=700$ signal in Table 1 were a factor of ten too high. 17 JUN 2015: Fixed one typo just in the HepData entry: the $M_{\widetilde{\text{t}}}$ masses listed in Table 2 were incorrect. Selection: - one e/$\mu$ ($\ell$) - e: $p_\text{T}$ > 30 GeV, |$\eta$| < 1.444 or 1.56 < |$\eta$| < 2.5 - $\mu$: $p_\text{T}$ > 30 GeV, |$\eta$| < 2.1 - one $\tau_{\text{h}}$ (hadronically decaying tau lepton): $p_\text{T}$ > 50 GeV, |$\eta$| < 2.3 - $\Delta$R($\ell$,$\tau_{\text{h}}$) > 0.5; vertex($\ell$) = vertex($\tau_{\text{h}}$); charge($\ell$) != charge($\tau_{\text{h}}$) - veto opposite sign $\mu$/e - veto opposite sign e/$\mu$ - jet: $p_\text{T}$ > 30 GeV, |$\eta$| < 2.4 - $N_{\text{jet}}$ $\geq$ 2 - $N_{\text{b-jet}}$ $\geq$ 1 - $\Delta$R(jet,$\ell$) > 0.5; $\Delta$R(jet,$\tau_{\text{h}}$) > 0.5 Leptoquark search final selection: - M($\tau_{\text{h}}$,jet) > 250 GeV (pairing is chosen that minimizes |M($\tau_{\text{h}}$,jet i) - M($\ell$,jet j)|) - $S_{\text{T}}$ = $p_\text{T}$($\ell$) + $p_\text{T}$($\tau_{\text{h}}$) + $p_\text{T}$(b-jet) + $p_\text{T}$(jet) Top squark search final selection: - $N_\text{jet}$ $\geq$ 5 - $S_{\text{T}}$ = $p_\text{T}$($\ell$) + $p_\text{T}$($\tau_{\text{h}}$) + $p_\text{T}$(b-jet) + $p_\text{T}$(jet 1) + $p_\text{T}$(jet 2) + $p_\text{T}$(jet 3) + $p_\text{T}$(jet 4).

Loading Data...