Searches for electroweak production of supersymmetric particles with compressed mass spectra in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector
Phys.Rev. D101 (2020) 052005, 2020.
The ATLAS collaboration

Abstract (data abstract)
This paper presents results of searches for electroweak production of supersymmetric particles in models with compressed mass spectra. The searches use 139/fb of sqrt(s) = 13 TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider. Events with missing transverse momentum and two same-flavor, oppositely charged, low transverse momentum leptons are selected, and are further categorized by the presence of hadronic activity from initial-state radiation or a topology compatible with vector-boson fusion processes. The data are found to be consistent with predictions from the Standard Model. The results are interpreted using simplified models of R-parity-conserving supersymmetry in which the lightest supersymmetric partner is a neutralino with a mass similar to the lightest chargino, the second-to-lightest neutralino or the slepton. Lower limits on the masses of charginos in different simplified models range from 193 GeV to 240 GeV for moderate mass splittings, and extend down to mass splittings of 1.5 GeV to 2.4 GeV at the LEP chargino bounds (92.4 GeV). Similar lower limits on degenerate light-flavor sleptons extend up to masses of 251 GeV and down to mass splittings of 550 MeV. Constraints on vector-boson fusion production of electroweak SUSY states are also presented.

Version 2 modifications: Fixed units (pb instead of fb) in the column labels of observed and expected upper limits on entries for Figures 41-46. NO CHANGE IN NUMERICAL VALUES of any entry.

Loading Data...