• Browse all
Rapidity and centrality dependence of particle production for identified hadrons in Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV

The BRAHMS collaboration
Phys.Rev.C 94 (2016) 014907, 2016.

Abstract (data abstract)
The BRAHMS collaboration has measured transverse momentum spectra of pions, kaons, protons, and antiprotons at rapidities 0 and 3 for Cu+Cu collisions at sNN=200 GeV. As the collisions become more central the collective radial flow increases while the temperature of kinetic freeze-out decreases. The temperature is lower and the radial flow weaker at forward rapidity. Pion and kaon yields with transverse momenta between 1.5 and 2.5 GeV/c are suppressed for central collisions relative to scaled p+p collisions. This suppression, which increases as the collisions become more central, is consistent with jet quenching models and is also present with comparable magnitude at forward rapidity. At such rapidities, initial state effects may also be present and persistence of the meson suppression to high rapidity may reflect a combination of jet quenching and nuclear shadowing. The ratio of protons to mesons increases as the collisions become more central and is largest at forward rapidities.

  • Table 2.00

    Table 2

    10.17182/hepdata.89453.v1/t1

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.01

    Table 2

    10.17182/hepdata.89453.v1/t2

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.02

    Table 2

    10.17182/hepdata.89453.v1/t3

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.03

    Table 2

    10.17182/hepdata.89453.v1/t4

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.04

    Table 2

    10.17182/hepdata.89453.v1/t5

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.05

    Table 2

    10.17182/hepdata.89453.v1/t6

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.06

    Table 2

    10.17182/hepdata.89453.v1/t7

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.07

    Table 2

    10.17182/hepdata.89453.v1/t8

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.08

    Table 2

    10.17182/hepdata.89453.v1/t9

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.09

    Table 2

    10.17182/hepdata.89453.v1/t10

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.10

    Table 2

    10.17182/hepdata.89453.v1/t11

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.11

    Table 2

    10.17182/hepdata.89453.v1/t12

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.12

    Table 2

    10.17182/hepdata.89453.v1/t13

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.13

    Table 2

    10.17182/hepdata.89453.v1/t14

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.14

    Table 2

    10.17182/hepdata.89453.v1/t15

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.15

    Table 2

    10.17182/hepdata.89453.v1/t16

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.16

    Table 2

    10.17182/hepdata.89453.v1/t17

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.17

    Table 2

    10.17182/hepdata.89453.v1/t18

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.18

    Table 2

    10.17182/hepdata.89453.v1/t19

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.19

    Table 2

    10.17182/hepdata.89453.v1/t20

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.20

    Table 2

    10.17182/hepdata.89453.v1/t21

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.21

    Table 2

    10.17182/hepdata.89453.v1/t22

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.22

    Table 2

    10.17182/hepdata.89453.v1/t23

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.23

    Table 2

    10.17182/hepdata.89453.v1/t24

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.24

    Table 2

    10.17182/hepdata.89453.v1/t25

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.25

    Table 2

    10.17182/hepdata.89453.v1/t26

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.26

    Table 2

    10.17182/hepdata.89453.v1/t27

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.27

    Table 2

    10.17182/hepdata.89453.v1/t28

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.28

    Table 2

    10.17182/hepdata.89453.v1/t29

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.29

    Table 2

    10.17182/hepdata.89453.v1/t30

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.30

    Table 2

    10.17182/hepdata.89453.v1/t31

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.31

    Table 2

    10.17182/hepdata.89453.v1/t32

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.32

    Table 2

    10.17182/hepdata.89453.v1/t33

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.33

    Table 2

    10.17182/hepdata.89453.v1/t34

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.34

    Table 2

    10.17182/hepdata.89453.v1/t35

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.35

    Table 2

    10.17182/hepdata.89453.v1/t36

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.36

    Table 2

    10.17182/hepdata.89453.v1/t37

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.37

    Table 2

    10.17182/hepdata.89453.v1/t38

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.38

    Table 2

    10.17182/hepdata.89453.v1/t39

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.39

    Table 2

    10.17182/hepdata.89453.v1/t40

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.40

    Table 2

    10.17182/hepdata.89453.v1/t41

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.41

    Table 2

    10.17182/hepdata.89453.v1/t42

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.42

    Table 2

    10.17182/hepdata.89453.v1/t43

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.43

    Table 2

    10.17182/hepdata.89453.v1/t44

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.44

    Table 2

    10.17182/hepdata.89453.v1/t45

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.45

    Table 2

    10.17182/hepdata.89453.v1/t46

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.46

    Table 2

    10.17182/hepdata.89453.v1/t47

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 2.47

    Table 2

    10.17182/hepdata.89453.v1/t48

    $\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 5.00

    Table 5

    10.17182/hepdata.89453.v1/t49

    $\frac{\mathrm{d}N}{\mathrm{d}y}\frac{2}{N_{\mathrm{part}}}$ versus $N_{\mathrm{part}}$ for $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 5.01

    Table 5

    10.17182/hepdata.89453.v1/t50

    $\frac{\mathrm{d}N}{\mathrm{d}y}\frac{2}{N_{\mathrm{part}}}$ versus $N_{\mathrm{part}}$ for $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 5.02

    Table 5

    10.17182/hepdata.89453.v1/t51

    $\frac{\mathrm{d}N}{\mathrm{d}y}\frac{2}{N_{\mathrm{part}}}$ versus $N_{\mathrm{part}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 5.03

    Table 5

    10.17182/hepdata.89453.v1/t52

    $\frac{\mathrm{d}N}{\mathrm{d}y}\frac{2}{N_{\mathrm{part}}}$ versus $N_{\mathrm{part}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 5.04

    Table 5

    10.17182/hepdata.89453.v1/t53

    $\frac{\mathrm{d}N}{\mathrm{d}y}\frac{2}{N_{\mathrm{part}}}$ versus $N_{\mathrm{part}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 5.05

    Table 5

    10.17182/hepdata.89453.v1/t54

    $\frac{\mathrm{d}N}{\mathrm{d}y}\frac{2}{N_{\mathrm{part}}}$ versus $N_{\mathrm{part}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 5.06

    Table 5

    10.17182/hepdata.89453.v1/t55

    $\frac{\mathrm{d}N}{\mathrm{d}y}\frac{2}{N_{\mathrm{part}}}$ versus $N_{\mathrm{part}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 5.07

    Table 5

    10.17182/hepdata.89453.v1/t56

    $\frac{\mathrm{d}N}{\mathrm{d}y}\frac{2}{N_{\mathrm{part}}}$ versus $N_{\mathrm{part}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.00

    Table 7

    10.17182/hepdata.89453.v1/t57

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}+\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.01

    Table 7

    10.17182/hepdata.89453.v1/t58

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}+\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.02

    Table 7

    10.17182/hepdata.89453.v1/t59

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}+\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.03

    Table 7

    10.17182/hepdata.89453.v1/t60

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}+\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.04

    Table 7

    10.17182/hepdata.89453.v1/t61

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}+\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.05

    Table 7

    10.17182/hepdata.89453.v1/t62

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}+\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.06

    Table 7

    10.17182/hepdata.89453.v1/t63

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}+\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.07

    Table 7

    10.17182/hepdata.89453.v1/t64

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}+\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.08

    Table 7

    10.17182/hepdata.89453.v1/t65

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.09

    Table 7

    10.17182/hepdata.89453.v1/t66

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.10

    Table 7

    10.17182/hepdata.89453.v1/t67

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.11

    Table 7

    10.17182/hepdata.89453.v1/t68

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.12

    Table 7

    10.17182/hepdata.89453.v1/t69

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}+\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.13

    Table 7

    10.17182/hepdata.89453.v1/t70

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}+\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.14

    Table 7

    10.17182/hepdata.89453.v1/t71

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}+\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.15

    Table 7

    10.17182/hepdata.89453.v1/t72

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{+}+\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.16

    Table 7

    10.17182/hepdata.89453.v1/t73

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.17

    Table 7

    10.17182/hepdata.89453.v1/t74

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.18

    Table 7

    10.17182/hepdata.89453.v1/t75

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.19

    Table 7

    10.17182/hepdata.89453.v1/t76

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.20

    Table 7

    10.17182/hepdata.89453.v1/t77

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}+\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.21

    Table 7

    10.17182/hepdata.89453.v1/t78

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}+\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.22

    Table 7

    10.17182/hepdata.89453.v1/t79

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}+\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.23

    Table 7

    10.17182/hepdata.89453.v1/t80

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}+\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.24

    Table 7

    10.17182/hepdata.89453.v1/t81

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.25

    Table 7

    10.17182/hepdata.89453.v1/t82

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.26

    Table 7

    10.17182/hepdata.89453.v1/t83

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 7.27

    Table 7

    10.17182/hepdata.89453.v1/t84

    $R_{\mathrm{AA}}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 8.00

    Table 8

    10.17182/hepdata.89453.v1/t85

    $R_{\mathrm{AA}}$ versus $N_{\mathrm{part}}$ for $\mathrm{K}^{+}+\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 8.01

    Table 8

    10.17182/hepdata.89453.v1/t86

    $R_{\mathrm{AA}}$ versus $N_{\mathrm{part}}$ for $\mathrm{K}^{+}+\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 8.02

    Table 8

    10.17182/hepdata.89453.v1/t87

    $R_{\mathrm{AA}}$ versus $N_{\mathrm{part}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 8.03

    Table 8

    10.17182/hepdata.89453.v1/t88

    $R_{\mathrm{AA}}$ versus $N_{\mathrm{part}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 8.04

    Table 8

    10.17182/hepdata.89453.v1/t89

    $R_{\mathrm{AA}}$ versus $N_{\mathrm{part}}$ for $\mathrm{\pi}^{+}+\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 8.05

    Table 8

    10.17182/hepdata.89453.v1/t90

    $R_{\mathrm{AA}}$ versus $N_{\mathrm{part}}$ for $\mathrm{\pi}^{+}+\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 8.06

    Table 8

    10.17182/hepdata.89453.v1/t91

    $R_{\mathrm{AA}}$ versus $N_{\mathrm{part}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 8.07

    Table 8

    10.17182/hepdata.89453.v1/t92

    $R_{\mathrm{AA}}$ versus $N_{\mathrm{part}}$ for $\mathrm{p}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 9.00

    Table 9

    10.17182/hepdata.89453.v1/t93

    $\mathrm{K}^{-}/\mathrm{K}^{+}$ versus $N_{\mathrm{part}}$ for $\mathrm{K}^{-}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 9.01

    Table 9

    10.17182/hepdata.89453.v1/t94

    $\mathrm{K}^{-}/\mathrm{K}^{+}$ versus $N_{\mathrm{part}}$ for $\mathrm{K}^{-}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 9.02

    Table 9

    10.17182/hepdata.89453.v1/t95

    $\mathrm{K}^{-}/\mathrm{\pi}^{-}$ versus $N_{\mathrm{part}}$ for $\mathrm{K}^{-}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 9.03

    Table 9

    10.17182/hepdata.89453.v1/t96

    $\mathrm{K}^{-}/\mathrm{\pi}^{-}$ versus $N_{\mathrm{part}}$ for $\mathrm{K}^{-}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 9.04

    Table 9

    10.17182/hepdata.89453.v1/t97

    $\mathrm{K}^{+}/\mathrm{\pi}^{+}$ versus $N_{\mathrm{part}}$ for $\mathrm{\pi}^{+}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 9.05

    Table 9

    10.17182/hepdata.89453.v1/t98

    $\mathrm{K}^{+}/\mathrm{\pi}^{+}$ versus $N_{\mathrm{part}}$ for $\mathrm{\pi}^{+}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 9.06

    Table 9

    10.17182/hepdata.89453.v1/t99

    $\overline{\mathrm{p}}/\mathrm{p}$ versus $N_{\mathrm{part}}$ for $\mathrm{p}$, $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 9.07

    Table 9

    10.17182/hepdata.89453.v1/t100

    $\overline{\mathrm{p}}/\mathrm{p}$ versus $N_{\mathrm{part}}$ for $\mathrm{p}$, $\overline{\mathrm{p}}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 9.08

    Table 9

    10.17182/hepdata.89453.v1/t101

    $\overline{\mathrm{p}}/\mathrm{\pi}^{-}$ versus $N_{\mathrm{part}}$ for $\overline{\mathrm{p}}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 9.09

    Table 9

    10.17182/hepdata.89453.v1/t102

    $\overline{\mathrm{p}}/\mathrm{\pi}^{-}$ versus $N_{\mathrm{part}}$ for $\overline{\mathrm{p}}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 9.10

    Table 9

    10.17182/hepdata.89453.v1/t103

    $\mathrm{\pi}^{-}/\mathrm{\pi}^{+}$ versus $N_{\mathrm{part}}$ for $\mathrm{\pi}^{+}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 9.11

    Table 9

    10.17182/hepdata.89453.v1/t104

    $\mathrm{\pi}^{-}/\mathrm{\pi}^{+}$ versus $N_{\mathrm{part}}$ for $\mathrm{\pi}^{+}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 9.12

    Table 9

    10.17182/hepdata.89453.v1/t105

    $\mathrm{p}/\mathrm{\pi}^{+}$ versus $N_{\mathrm{part}}$ for $\mathrm{p}$, $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 9.13

    Table 9

    10.17182/hepdata.89453.v1/t106

    $\mathrm{p}/\mathrm{\pi}^{+}$ versus $N_{\mathrm{part}}$ for $\mathrm{p}$, $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.00

    Table 10

    10.17182/hepdata.89453.v1/t107

    $\mathrm{K}^{-}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.01

    Table 10

    10.17182/hepdata.89453.v1/t108

    $\mathrm{K}^{-}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.02

    Table 10

    10.17182/hepdata.89453.v1/t109

    $\mathrm{K}^{-}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.03

    Table 10

    10.17182/hepdata.89453.v1/t110

    $\mathrm{K}^{-}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.04

    Table 10

    10.17182/hepdata.89453.v1/t111

    $\mathrm{K}^{+}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.05

    Table 10

    10.17182/hepdata.89453.v1/t112

    $\mathrm{K}^{+}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.06

    Table 10

    10.17182/hepdata.89453.v1/t113

    $\mathrm{K}^{+}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.07

    Table 10

    10.17182/hepdata.89453.v1/t114

    $\mathrm{K}^{+}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.08

    Table 10

    10.17182/hepdata.89453.v1/t115

    $\overline{\mathrm{p}}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.09

    Table 10

    10.17182/hepdata.89453.v1/t116

    $\overline{\mathrm{p}}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.10

    Table 10

    10.17182/hepdata.89453.v1/t117

    $\overline{\mathrm{p}}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.11

    Table 10

    10.17182/hepdata.89453.v1/t118

    $\overline{\mathrm{p}}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.12

    Table 10

    10.17182/hepdata.89453.v1/t119

    $\mathrm{p}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$, $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.13

    Table 10

    10.17182/hepdata.89453.v1/t120

    $\mathrm{p}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$, $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.14

    Table 10

    10.17182/hepdata.89453.v1/t121

    $\mathrm{p}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$, $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.15

    Table 10

    10.17182/hepdata.89453.v1/t122

    $\mathrm{p}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$, $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.16

    Table 10

    10.17182/hepdata.89453.v1/t123

    $\mathrm{K}^{-}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.17

    Table 10

    10.17182/hepdata.89453.v1/t124

    $\mathrm{K}^{-}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.18

    Table 10

    10.17182/hepdata.89453.v1/t125

    $\mathrm{K}^{-}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.19

    Table 10

    10.17182/hepdata.89453.v1/t126

    $\mathrm{K}^{-}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.20

    Table 10

    10.17182/hepdata.89453.v1/t127

    $\mathrm{K}^{+}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.21

    Table 10

    10.17182/hepdata.89453.v1/t128

    $\mathrm{K}^{+}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.22

    Table 10

    10.17182/hepdata.89453.v1/t129

    $\mathrm{K}^{+}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.23

    Table 10

    10.17182/hepdata.89453.v1/t130

    $\mathrm{K}^{+}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{K}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.24

    Table 10

    10.17182/hepdata.89453.v1/t131

    $\overline{\mathrm{p}}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.25

    Table 10

    10.17182/hepdata.89453.v1/t132

    $\overline{\mathrm{p}}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.26

    Table 10

    10.17182/hepdata.89453.v1/t133

    $\overline{\mathrm{p}}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.27

    Table 10

    10.17182/hepdata.89453.v1/t134

    $\overline{\mathrm{p}}/\mathrm{\pi}^{-}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{\pi}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.28

    Table 10

    10.17182/hepdata.89453.v1/t135

    $\mathrm{p}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$, $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.29

    Table 10

    10.17182/hepdata.89453.v1/t136

    $\mathrm{p}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$, $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.30

    Table 10

    10.17182/hepdata.89453.v1/t137

    $\mathrm{p}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$, $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

  • Table 10.31

    Table 10

    10.17182/hepdata.89453.v1/t138

    $\mathrm{p}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$, $\mathrm{\pi}^{+}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

Loading Data...

Ask a Question


Your question will be emailed to those involved with the submission. Please mention the relevant table.


Please log in to HEPData to send a question.