• Browse all
Azimuthally-differential pion femtoscopy relative to the third harmonic event plane in Pb-Pb collisions at $\mathbf{\sqrt{\textit{s}_{_{\rm NN}}}}$ = 2.76 TeV

The ALICE collaboration
Phys.Lett.B 785 (2018) 320-331, 2018.

Abstract
Azimuthally-differential femtoscopic measurements, being sensitive to spatio-temporal characteristics of the source as well as to the collective velocity fields at freeze out, provide very important information on the nature and dynamics of the system evolution. While the HBT radii oscillations relative to the second harmonic event plane measured recently reflect mostly the spatial geometry of the source, model studies have shown that the HBT radii oscillations relative to the third harmonic event plane are predominantly defined by the velocity fields. In this Letter, we present the first results on azimuthally-differential pion femtoscopy relative to the third harmonic event plane as a function of the pion pair transverse momentum $k_{\rm T}$ for different collision centralities in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV. We find that the $R_{\rm side}$ and $R_{\rm out}$ radii, which characterize the pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate in phase relative to the third harmonic event plane, similar to the results from 3+1D hydrodynamical calculations. The observed radii oscillations unambiguously signal a collective expansion and anisotropy in the velocity fields. A comparison of the measured radii oscillations with the Blast-Wave model calculations indicate that the initial state triangularity is washed-out at freeze out.

  • Table 1

    Data from Figure 1a

    10.17182/hepdata.91129.v1/t1

    The azimuthal dependence $R_{out}^2$ as function of $\Phi_{pair} - \Psi_{\mathrm{EP,3}}$ for the centrality 20-30% and different kT.

  • Table 2

    Data from Figure 1a

    10.17182/hepdata.91129.v1/t2

    The azimuthal dependence $R_{out}^2$ as function of $\Phi_{pair} - \Psi_{\mathrm{EP,3}}$ for the centrality 20-30% and different kT.

  • Table 3

    Data from Figure 1a

    10.17182/hepdata.91129.v1/t3

    The azimuthal dependence $R_{out}^2$ as function of $\Phi_{pair} - \Psi_{\mathrm{EP,3}}$ for the centrality 20-30% and different kT.

  • Table 4

    Data from Figure 1a

    10.17182/hepdata.91129.v1/t4

    The azimuthal dependence $R_{out}^2$ as function of $\Phi_{pair} - \Psi_{\mathrm{EP,3}}$ for the centrality 20-30% and different kT.

  • Table 5

    Data from Figure 1b

    10.17182/hepdata.91129.v1/t5

    The azimuthal dependence $R_{side}^2$ as function of $\Phi_{pair} - \Psi_{\mathrm{EP,3}}$ for the centrality 20-30% and different kT.

  • Table 6

    Data from Figure 1b

    10.17182/hepdata.91129.v1/t6

    The azimuthal dependence $R_{side}^2$ as function of $\Phi_{pair} - \Psi_{\mathrm{EP,3}}$ for the centrality 20-30% and different kT.

  • Table 7

    Data from Figure 1b

    10.17182/hepdata.91129.v1/t7

    The azimuthal dependence $R_{side}^2$ as function of $\Phi_{pair} - \Psi_{\mathrm{EP,3}}$ for the centrality 20-30% and different kT.

  • Table 8

    Data from Figure 1b

    10.17182/hepdata.91129.v1/t8

    The azimuthal dependence $R_{side}^2$ as function of $\Phi_{pair} - \Psi_{\mathrm{EP,3}}$ for the centrality 20-30% and different kT.

  • Table 9

    Data from Figure 1c

    10.17182/hepdata.91129.v1/t9

    The azimuthal dependence $R_{long}^2$ as function of $\Phi_{pair} - \Psi_{\mathrm{EP,3}}$ for the centrality 20-30% and different kT.

  • Table 10

    Data from Figure 1c

    10.17182/hepdata.91129.v1/t10

    The azimuthal dependence $R_{long}^2$ as function of $\Phi_{pair} - \Psi_{\mathrm{EP,3}}$ for the centrality 20-30% and different kT.

  • Table 11

    Data from Figure 1c

    10.17182/hepdata.91129.v1/t11

    The azimuthal dependence $R_{long}^2$ as function of $\Phi_{pair} - \Psi_{\mathrm{EP,3}}$ for the centrality 20-30% and different kT.

  • Table 12

    Data from Figure 1c

    10.17182/hepdata.91129.v1/t12

    The azimuthal dependence $R_{long}^2$ as function of $\Phi_{pair} - \Psi_{\mathrm{EP,3}}$ for the centrality 20-30% and different kT.

  • Table 13

    Data from Figure 2a

    10.17182/hepdata.91129.v1/t13

    Amplitudes of the radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 14

    Data from Figure 2a

    10.17182/hepdata.91129.v1/t14

    Amplitudes of the radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 15

    Data from Figure 2a

    10.17182/hepdata.91129.v1/t15

    Amplitudes of the radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 16

    Data from Figure 2a

    10.17182/hepdata.91129.v1/t16

    Amplitudes of the radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 17

    Data from Figure 2b

    10.17182/hepdata.91129.v1/t17

    Amplitudes of the radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 18

    Data from Figure 2b

    10.17182/hepdata.91129.v1/t18

    Amplitudes of the radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 19

    Data from Figure 2b

    10.17182/hepdata.91129.v1/t19

    Amplitudes of the radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 20

    Data from Figure 2b

    10.17182/hepdata.91129.v1/t20

    Amplitudes of the radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 21

    Data from Figure 2c

    10.17182/hepdata.91129.v1/t21

    Amplitudes of the radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 22

    Data from Figure 2c

    10.17182/hepdata.91129.v1/t22

    Amplitudes of the radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 23

    Data from Figure 2c

    10.17182/hepdata.91129.v1/t23

    Amplitudes of the radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 24

    Data from Figure 2c

    10.17182/hepdata.91129.v1/t24

    Amplitudes of the radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 25

    Data from Figure 2d

    10.17182/hepdata.91129.v1/t25

    Amplitudes of the radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 26

    Data from Figure 2d

    10.17182/hepdata.91129.v1/t26

    Amplitudes of the radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 27

    Data from Figure 2d

    10.17182/hepdata.91129.v1/t27

    Amplitudes of the radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 28

    Data from Figure 2d

    10.17182/hepdata.91129.v1/t28

    Amplitudes of the radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 29

    Data from Figure 3a

    10.17182/hepdata.91129.v1/t29

    Amplitudes of the relative radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 30

    Data from Figure 3a

    10.17182/hepdata.91129.v1/t30

    Amplitudes of the relative radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 31

    Data from Figure 3a

    10.17182/hepdata.91129.v1/t31

    Amplitudes of the relative radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 32

    Data from Figure 3a

    10.17182/hepdata.91129.v1/t32

    Amplitudes of the relative radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 33

    Data from Figure 3b

    10.17182/hepdata.91129.v1/t33

    Amplitudes of the relative radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 34

    Data from Figure 3b

    10.17182/hepdata.91129.v1/t34

    Amplitudes of the relative radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 35

    Data from Figure 3b

    10.17182/hepdata.91129.v1/t35

    Amplitudes of the relative radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 36

    Data from Figure 3b

    10.17182/hepdata.91129.v1/t36

    Amplitudes of the relative radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 37

    Data from Figure 3c

    10.17182/hepdata.91129.v1/t37

    Amplitudes of the relative radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 38

    Data from Figure 3c

    10.17182/hepdata.91129.v1/t38

    Amplitudes of the relative radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 39

    Data from Figure 3c

    10.17182/hepdata.91129.v1/t39

    Amplitudes of the relative radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 40

    Data from Figure 3c

    10.17182/hepdata.91129.v1/t40

    Amplitudes of the relative radii oscillations as function of centrality percentile for four different $k_{\mathrm{T}}$.

  • Table 41

    Data from Figure 4

    10.17182/hepdata.91129.v1/t41

    The relative amplitudes of the radius oscillations dependence on the third-order anisotropies in space and transverse flow for kT =...

  • Table 42

    Data from Figure 4

    10.17182/hepdata.91129.v1/t42

    The relative amplitudes of the radius oscillations dependence on the third-order anisotropies in space and transverse flow for kT =...

  • Table 43

    Data from Figure 4

    10.17182/hepdata.91129.v1/t43

    Blast-Wave model source parameters, final source anisotropy ($a_{3}$) and transverse flow ($\rho_{3}$);, for different centrality ranges, as obtained from the...

  • Table 44

    Data from Figure 4

    10.17182/hepdata.91129.v1/t44

    Blast-Wave model source parameters, final source anisotropy ($a_{3}$) and transverse flow ($\rho_{3}$);, for different centrality ranges, as obtained from the...

  • Table 45

    Data from Figure 4

    10.17182/hepdata.91129.v1/t45

    Blast-Wave model source parameters, final source anisotropy ($a_{3}$) and transverse flow ($\rho_{3}$);, for different centrality ranges, as obtained from the...

  • Table 46

    Data from Figure 4

    10.17182/hepdata.91129.v1/t46

    Blast-Wave model source parameters, final source anisotropy ($a_{3}$) and transverse flow ($\rho_{3}$);, for different centrality ranges, as obtained from the...

  • Table 47

    Data from Figure 4

    10.17182/hepdata.91129.v1/t47

    Blast-Wave model source parameters, final source anisotropy ($a_{3}$) and transverse flow ($\rho_{3}$), for different centrality ranges, as obtained from the...

  • Table 48

    Data from Figure 4

    10.17182/hepdata.91129.v1/t48

    Blast-Wave model source parameters, final source anisotropy ($a_{3}$) and transverse flow ($\rho_{3}$), for different centrality ranges, as obtained from the...

Loading Data...

Ask a Question


Your question will be emailed to those involved with the submission. Please mention the relevant table.


Please log in to HEPData to send a question.