Investigation into the event-activity dependence of $\Upsilon$(nS) relative production in proton-proton collisions at $\sqrt{s} = $ 7 TeV

The CMS collaboration
JHEP 11 (2020) 001, 2020.

Abstract (data abstract)
CERN-LHC-CMS. Investigation into the event-activity dependence of Υ(nS) relative production in proton-proton collisions at √s = 7 TeV.

  • Figure 2-left. The ratios Y(nS)/Y(1S) as functions of N_track

    Figure 2 (left).

    10.17182/hepdata.95684.v1/t1

    The measured ratios $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ and $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ with $p_T(\Upsilon(n$S$))>7\,GeV$ and $|y(\Upsilon(n$S$))| < 1.2$, as a function of track multiplicity $N_{track}$

  • Figure 2-right. The ratios Y(nS)/Y(1S) as functions of N_track

    Figure 2 (right).

    10.17182/hepdata.95684.v1/t2

    The measured ratios $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ and $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ with $p_T(\Upsilon(n$S$))>0\,GeV$ and $|y(\Upsilon(n$S$))| < 1.93$, as a function of track multiplicity $N_{track}$.

  • Figure 3-left. Average Y(nS) p_T as functions of N_track

    Figure 3 (left).

    10.17182/hepdata.95684.v1/t3

    Mean $p_T$ values of the $\Upsilon(1$S$)$, $\Upsilon(2$S$)$, and $\Upsilon(3S)$ states with $p_T\,>\,7\,GeV$ and $|y|\,<\,1.2$ as a function of track multiplicity...

  • Figure 3-right. Average Y(nS) p_T as functions of N_track

    Figure 3 (right).

    10.17182/hepdata.95684.v1/t4

    Mean $p_T$ values of the $\Upsilon(1$S$)$, $\Upsilon(2$S$)$, and $\Upsilon(3$S$)$ states with $p_T\,>\,0\,GeV$ and $|y|\,<\,1.2$ as a function of track multiplicity...

  • Figure 4-left. Y(2S)/Y(1S) as functions of N_track, 0<pT<5 GeV

    Figure 4 (left).

    10.17182/hepdata.95684.v1/t5

    Ratio $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ with $|y|\,<\,1.2$ as a function of track multiplicity $N_{track}$ in $0<p_T<5\,$GeV range

  • Figure 4-left. Y(2S)/Y(1S) as functions of N_track, 5<pT<7 GeV

    Figure 4 (left).

    10.17182/hepdata.95684.v1/t6

    Ratio $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ with $|y|\,<\,1.2$ as a function of track multiplicity $N_{track}$ in $5<p_T<7\,$GeV range

  • Figure 4-left. Y(2S)/Y(1S) as functions of N_track, 7<pT<9 GeV

    Figure 4 (left).

    10.17182/hepdata.95684.v1/t7

    Ratio $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ with $|y|\,<\,1.2$ as a function of track multiplicity $N_{track}$ in $7<p_T<9\,$GeV range

  • Figure 4-left. Y(2S)/Y(1S) as functions of N_track, 9<pT<11 GeV

    Figure 4 (left).

    10.17182/hepdata.95684.v1/t8

    Ratio $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ with $|y|\,<\,1.2$ as a function of track multiplicity $N_{track}$ in $9<p_T<11\,$GeV range

  • Figure 4-left. Y(2S)/Y(1S) as functions of N_track, 11<pT<15GeV

    Figure 4 (left).

    10.17182/hepdata.95684.v1/t9

    Ratio $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ with $|y|\,<\,1.2$ as a function of track multiplicity $N_{track}$ in $11<p_T<15\,$GeV range

  • Figure 4-left. Y(2S)/Y(1S) as functions of N_track, 15<pT<20GeV

    Figure 4 (left).

    10.17182/hepdata.95684.v1/t10

    Ratio $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ with $|y|\,<\,1.2$ as a function of track multiplicity $N_{track}$ in $15<p_T<20\,$GeV range

  • Figure 4-left. Y(2S)/Y(1S) as functions of N_track, 20<pT<50GeV

    Figure 4 (left).

    10.17182/hepdata.95684.v1/t11

    Ratio $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ with $|y|\,<\,1.2$ as a function of track multiplicity $N_{track}$ in $20<p_T<50\,$GeV range

  • Figure 4-right. Y(3S)/Y(1S) as functions of N_track, 0<pT<5 GeV

    Figure 4 (right).

    10.17182/hepdata.95684.v1/t12

    Ratio $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ with $|y|\,<\,1.2$ as a function of track multiplicity $N_{track}$ in $0<p_T<5\,$GeV range

  • Figure 4-right. Y(3S)/Y(1S) as functions of N_track, 5<pT<7 GeV

    Figure 4 (right).

    10.17182/hepdata.95684.v1/t13

    Ratio $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ with $|y|\,<\,1.2$ as a function of track multiplicity $N_{track}$ in $5<p_T<7\,$GeV range

  • Figure 4-right. Y(3S)/Y(1S) as functions of N_track, 7<pT<9 GeV

    Figure 4 (right).

    10.17182/hepdata.95684.v1/t14

    Ratio $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ with $|y|\,<\,1.2$ as a function of track multiplicity $N_{track}$ in $7<p_T<9\,$GeV range

  • Figure 4-right. Y(3S)/Y(1S) as functions of N_track, 9<pT<11 GeV

    Figure 4 (right).

    10.17182/hepdata.95684.v1/t15

    Ratio $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ with $|y|\,<\,1.2$ as a function of track multiplicity $N_{track}$ in $9<p_T<11\,$GeV range

  • Figure 4-right. Y(3S)/Y(1S) as functions of N_track, 11<pT<15GeV

    Figure 4 (right).

    10.17182/hepdata.95684.v1/t16

    Ratio $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ with $|y|\,<\,1.2$ as a function of track multiplicity $N_{track}$ in $11<p_T<15\,$GeV range

  • Figure 4-right. Y(3S)/Y(1S) as functions of N_track, 15<pT<20GeV

    Figure 4 (right).

    10.17182/hepdata.95684.v1/t17

    Ratio $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ with $|y|\,<\,1.2$ as a function of track multiplicity $N_{track}$ in $15<p_T<20\,$GeV range

  • Figure 4-right. Y(3S)/Y(1S) as functions of N_track, 20<pT<50GeV

    Figure 4 (right).

    10.17182/hepdata.95684.v1/t18

    Ratio $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ with $|y|\,<\,1.2$ as a function of track multiplicity $N_{track}$ in $20<p_T<50\,$GeV range

  • Figure 5-right. Ratio Y(nS)/Y(1S) as function of N_fwrd_track

    Figure 5 (right).

    10.17182/hepdata.95684.v1/t19

    Ratios $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ and $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ as functions of "forward" track multiplicity $N_{track}^{\Delta\phi}$ for $\Upsilon(n$S$)$ states with $p_T\,>\,7\,GeV$ and $|y|\,<\,1.2$. Forward tracks...

  • Figure 5-right. Ratio Y(nS)/Y(1S) as function of N_transv_track

    Figure 5 (right).

    10.17182/hepdata.95684.v1/t20

    Ratios $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ and $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ as functions of "transverse" track multiplicity $N_{track}^{\Delta\phi}$ for $\Upsilon(n$S$)$ states with $p_T\,>\,7\,GeV$ and $|y|\,<\,1.2$. Transverse tracks...

  • Figure 5-right. Ratio Y(nS)/Y(1S) as function of N_bckwd_track

    Figure 5 (right).

    10.17182/hepdata.95684.v1/t21

    Ratios $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ and $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ as functions of "backward" track multiplicity $N_{track}^{\Delta\phi}$ for $\Upsilon(n$S$)$ states with $p_T\,>\,7\,GeV$ and $|y|\,<\,1.2$. Backward tracks...

  • Figure 6-left. Ratio Y(nS)/Y(1S) for 0 trks in dR cone around Y

    Figure 6 (left).

    10.17182/hepdata.95684.v1/t22

    Ratios $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ and $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ as functions of track multiplicity $N_{track}$ for $\Upsilon(n$S$)$ states with $p_T\,>\,7\,GeV$ and $|y|\,<\,1.2$ and $N^{\Delta R}_{track}\,=\,0$...

  • Figure 6-left. Ratio Y(nS)/Y(1S) for 1 trk in dR cone around Y

    Figure 6 (left).

    10.17182/hepdata.95684.v1/t23

    Ratios $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ and $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ as functions of track multiplicity $N_{track}$ for $\Upsilon(n$S$)$ states with $p_T\,>\,7\,GeV$ and $|y|\,<\,1.2$ and $N^{\Delta R}_{track}\,=\,1$...

  • Figure 6-left. Ratio Y(nS)/Y(1S) for 2 trks in dR cone around Y

    Figure 6 (left).

    10.17182/hepdata.95684.v1/t24

    Ratios $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ and $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ as functions of track multiplicity $N_{track}$ for $\Upsilon(n$S$)$ states with $p_T\,>\,7\,GeV$ and $|y|\,<\,1.2$ and $N^{\Delta R}_{track}\,=\,2$...

  • Figure 6-left. Ratio Y(nS)/Y(1S) for >2 trks in dR cone around Y

    Figure 6 (left).

    10.17182/hepdata.95684.v1/t25

    Ratios $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ and $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ as functions of track multiplicity $N_{track}$ for $\Upsilon(n$S$)$ states with $p_T\,>\,7\,GeV$ and $|y|\,<\,1.2$ and $N^{\Delta R}_{track}\,>\,2$...

  • Figure 6-right. Ratio Y(nS)/Y(1S) for sphericity 0.00<S_T<0.55

    Figure 6 (right).

    10.17182/hepdata.95684.v1/t26

    Ratios $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ and $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ as functions of track multiplicity $N_{track}$ in transverse sphericity bin $0.00\,<\,S_T\,<\,0.55$ for $\Upsilon(n$S$)$ states with $p_T\,>\,7\,GeV$...

  • Figure 6-right. Ratio Y(nS)/Y(1S) for sphericity 0.55<S_T<0.70

    Figure 6 (right).

    10.17182/hepdata.95684.v1/t27

    Ratios $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ and $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ as functions of track multiplicity $N_{track}$ in transverse sphericity bin $0.55\,<\,S_T\,<\,0.70$ for $\Upsilon(n$S$)$ states with $p_T\,>\,7\,GeV$...

  • Figure 6-right. Ratio Y(nS)/Y(1S) for sphericity 0.70<S_T<0.85

    Figure 6 (right).

    10.17182/hepdata.95684.v1/t28

    Ratios $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ and $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ as functions of track multiplicity $N_{track}$ in transverse sphericity bin $0.70\,<\,S_T\,<\,0.85$ for $\Upsilon(n$S$)$ states with $p_T\,>\,7\,GeV$...

  • Figure 6-right. Ratio Y(nS)/Y(1S) for sphericity 0.85<S_T<1.00

    Figure 6 (right).

    10.17182/hepdata.95684.v1/t29

    Ratios $\Upsilon(2$S$)\,/\,\Upsilon(1$S$)$ and $\Upsilon(3$S$)\,/\,\Upsilon(1$S$)$ as functions of track multiplicity $N_{track}$ in transverse sphericity bin $0.85\,<\,S_T\,<\,1.00$ for $\Upsilon(n$S$)$ states with $p_T\,>\,7\,GeV$...

  • Table 1. Efficiency-corrected multiplicity bins

    Table 1.

    10.17182/hepdata.95684.v1/t30

    Efficiency-corrected multiplicity bins used in the $\Upsilon(n$S$)$ ratio analysis and the corresponding mean number of charged particle tracks.

Loading Data...

Ask a Question


Your question will be emailed to those involved with the submission. Please mention the relevant table.


Please log in to HEPData to send a question.