The azimuthal correlation between the leading jet and the scattered lepton in deep inelastic scattering at HERA

The ZEUS collaboration
DESY-24-070, 2024.

Abstract (data abstract)
The azimuthal correlation angle, $\Delta\phi$, between the scattered lepton and the leading jet in deep inelastic $e^{\pm}p$ scattering at HERA has been studied using data collected with the ZEUS detector at a centre-of-mass energy of $\sqrt{s} = 318 \;\mathrm{GeV}$, corresponding to an integrated luminosity of $326 \;\mathrm{pb}^{-1}$.A measurement of jet cross sections in the laboratory frame was made in a fiducial region corresponding to photon virtuality $10 \;\mathrm{GeV}^{2} < Q^{2} < 350 \;\mathrm{GeV}^{2}$, inelasticity $0.04 < y < 0.7$, outgoing lepton energy $E_e > 10 \;\mathrm{GeV}$, lepton polar angle $140^\circ < \theta_e < 180^\circ$, jet transverse momentum $2.5 \;\mathrm{GeV} < p_\mathrm{T,jet} < 30 \;\mathrm{GeV}$, and jet pseudorapidity $-1.5 < \eta_\mathrm{jet} < 1.8$.Jets were reconstructed using the $k_\mathrm{T}$ algorithm with the radius parameter $R = 1$.The leading jet in an event is defined as the jet that carries the highest $p_\mathrm{T,jet}$.Differential cross sections, $d\sigma/d\Delta\phi$, were measured as a function of the azimuthal correlation angle in various ranges of leading-jet transverse momentum, photon virtuality and jet multiplicity.Perturbative calculations at $\mathcal{O}(\alpha_{s}^2)$ accuracy successfully describe the data within the fiducial region, although a lower level of agreement is observed near $\Delta\phi \rightarrow \pi$ for events with high jet multiplicity, due to limitations of the perturbative approach in describing soft phenomena in QCD.The data are equally well described by Monte Carlo predictions that supplement leading-order matrix elements with parton showering.

  • Table 1

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t1

    Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file,...

  • Table 2.1

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t2

    Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file,...

  • Table 2.2

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t3

    Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file,...

  • Table 2.3

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t4

    Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file,...

  • Table 3.1

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t5

    Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file,...

  • Table 3.2

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t6

    Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file,...

  • Table 3.3

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t7

    Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file,...

  • Table 4.1

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t8

    Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file,...

  • Table 4.2

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t9

    Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file,...

  • Table 4.3

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t10

    Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file,...

  • Table 5.1

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t11

    Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file,...

  • Table 5.2

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t12

    Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file,...

  • Table 5.3

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t13

    Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file,...

  • Table 6.1

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t14

    Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file,...

  • Table 6.2

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t15

    Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file,...

  • Table 6.3

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t16

    Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file,...

  • Table 7.1

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t17

    Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file,...

  • Table 7.2

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t18

    Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file,...

  • Table 7.3

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t19

    Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file,...

  • Table 8

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t20

    QED correction factors for inclusive measurement, as estimated with RAPGAP.

  • Table 9.1.1

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t21

    QED correction factors for $2.5 \;\mathrm{GeV} < p_{T,jet}^{lead} < 7 \;\mathrm{GeV}$ and $N_{jet} \geq 1$, as estimated with RAPGAP.

  • Table 9.1.2

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t22

    QED correction factors for $2.5 \;\mathrm{GeV} < p_{T,jet}^{lead} < 7 \;\mathrm{GeV}$ and $N_{jet} \geq 2$, as estimated with RAPGAP.

  • Table 9.1.3

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t23

    QED correction factors for $2.5 \;\mathrm{GeV} < p_{T,jet}^{lead} < 7 \;\mathrm{GeV}$ and $N_{jet} \geq 3$, as estimated with RAPGAP.

  • Table 9.2.1

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t24

    QED correction factors for $7 \;\mathrm{GeV} < p_{T,jet}^{lead} < 12 \;\mathrm{GeV}$ and $N_{jet} \geq 1$, as estimated with RAPGAP.

  • Table 9.2.2

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t25

    QED correction factors for $7 \;\mathrm{GeV} < p_{T,jet}^{lead} < 12 \;\mathrm{GeV}$ and $N_{jet} \geq 2$, as estimated with RAPGAP.

  • Table 9.2.3

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t26

    QED correction factors for $7 \;\mathrm{GeV} < p_{T,jet}^{lead} < 12 \;\mathrm{GeV}$ and $N_{jet} \geq 3$, as estimated with RAPGAP.

  • Table 9.3.1

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t27

    QED correction factors for $12 \;\mathrm{GeV} < p_{T,jet}^{lead} < 30 \;\mathrm{GeV}$ and $N_{jet} \geq 1$, as estimated with RAPGAP.

  • Table 9.3.2

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t28

    QED correction factors for $12 \;\mathrm{GeV} < p_{T,jet}^{lead} < 30 \;\mathrm{GeV}$ and $N_{jet} \geq 2$, as estimated with RAPGAP.

  • Table 9.3.3

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t29

    QED correction factors for $12 \;\mathrm{GeV} < p_{T,jet}^{lead} < 30 \;\mathrm{GeV}$ and $N_{jet} \geq 3$, as estimated with RAPGAP.

  • Table 10.1.1

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t30

    QED correction factors for $10 \;\mathrm{GeV}^{2} < Q^{2} < 50 \;\mathrm{GeV}^{2}$ and $N_{jet} \geq 1$, as estimated with RAPGAP.

  • Table 10.1.2

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t31

    QED correction factors for $10 \;\mathrm{GeV}^{2} < Q^{2} < 50 \;\mathrm{GeV}^{2}$ and $N_{jet} \geq 2$, as estimated with RAPGAP.

  • Table 10.1.3

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t32

    QED correction factors for $10 \;\mathrm{GeV}^{2} < Q^{2} < 50 \;\mathrm{GeV}^{2}$ and $N_{jet} \geq 3$, as estimated with RAPGAP.

  • Table 10.2.1

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t33

    QED correction factors for $50 \;\mathrm{GeV}^{2} < Q^{2} < 100 \;\mathrm{GeV}^{2}$ and $N_{jet} \geq 1$, as estimated with RAPGAP.

  • Table 10.2.2

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t34

    QED correction factors for $50 \;\mathrm{GeV}^{2} < Q^{2} < 100 \;\mathrm{GeV}^{2}$ and $N_{jet} \geq 2$, as estimated with RAPGAP.

  • Table 10.2.3

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t35

    QED correction factors for $50 \;\mathrm{GeV}^{2} < Q^{2} < 100 \;\mathrm{GeV}^{2}$ and $N_{jet} \geq 3$, as estimated with RAPGAP.

  • Table 10.3.1

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t36

    QED correction factors for $100 \;\mathrm{GeV}^{2} < Q^{2} < 350 \;\mathrm{GeV}^{2}$ and $N_{jet} \geq 1$, as estimated with RAPGAP.

  • Table 10.3.2

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t37

    QED correction factors for $100 \;\mathrm{GeV}^{2} < Q^{2} < 350 \;\mathrm{GeV}^{2}$ and $N_{jet} \geq 2$, as estimated with RAPGAP.

  • Table 10.3.3

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t38

    QED correction factors for $100 \;\mathrm{GeV}^{2} < Q^{2} < 350 \;\mathrm{GeV}^{2}$ and $N_{jet} \geq 3$, as estimated with RAPGAP.

  • Figure 13

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t39

    The correlation matrix for the inclusive measurement. The azimuthal correlation angle $\Delta\phi$ of each lepton--leading-jet pair was assigned a bin...

  • Figure 14.1

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t40

    The correlation matrix for $2.5 \;\mathrm{GeV} < p_{T,jet}^{lead} < 7 \;\mathrm{GeV}$. Other details are as in the caption to Fig....

  • Figure 14.2

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t41

    The correlation matrix for $7 \;\mathrm{GeV} < p_{T,jet}^{lead} < 12 \;\mathrm{GeV}$. Other details are as in the caption to Fig....

  • Figure 14.3

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t42

    The correlation matrix for $12 \;\mathrm{GeV} < p_{T,jet}^{lead} < 30 \;\mathrm{GeV}$. Other details are as in the caption to Fig....

  • Figure 14.4

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t43

    The correlation matrix for $10 \;\mathrm{GeV}^{2} < Q^{2} < 50 \;\mathrm{GeV}^{2}$. Other details are as in the caption to Fig....

  • Figure 14.5

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t44

    The correlation matrix for $50 \;\mathrm{GeV}^{2} < Q^{2} < 100 \;\mathrm{GeV}^{2}$. Other details are as in the caption to Fig....

  • Figure 14.6

    https://arxiv.org/abs/2406.01430

    10.17182/hepdata.153487.v1/t45

    The correlation matrix for $100 \;\mathrm{GeV}^{2} < Q^{2} < 350 \;\mathrm{GeV}^{2}$. Other details are as in the caption to Fig....

Loading Data...

Ask a Question


Your question will be emailed to those involved with the submission. Please mention the relevant table.


Please log in to HEPData to send a question.