Measurement of $\sigma(e^+ e^- \to \pi^+ \pi^-)$ from threshold to 0.85 GeV$^2$ using Initial State Radiation with the KLOE detector

The KLOE collaboration
Phys.Lett.B 700 (2011) 102-110, 2011.

Abstract (data abstract)
We have measured the cross section of the radiative process $e^+e^- \to \pi^+\pi^-\gamma$ with the KLOE detector at the Frascati $\phi$-factory DA$\Phi$NE, from events taken at a CM energy W=1 GeV. Initial state radiation allows us to obtain the cross section for $e^+e^- \to \pi^+\pi^-$, the pion form factor $|F_\pi|^2$ and the dipion contribution to the muon magnetic moment anomaly, $\Delta a_\mu^{\pi\pi} = (478.5\pm2.0_{stat}\pm5.0_{syst}\pm4.5_{th}) \times 10^{-10}$ in the range $0.1 < M_{\pi\pi}^2 < 0.85$ GeV$^2$, where the theoretical error includes a SU(3) ChPT estimate of the uncertainty on photon radiation from the final pions. The discrepancy between the Standard Model evaluation of $a_\mu$ and the value measured by the Muon g-2 collaboration at BNL is confirmed.

  • Differential cross section

    Data from Fig. 3, Left and Table 2

    10.17182/hepdata.96268.v1/t1

    Differential cross section for $e^+e^-\rightarrow\pi^+\pi^-\gamma$, with $50^o<\theta_\gamma<130^o$

  • Differential cross-section statistical covariance

    Data from https://www.lnf.infn.it/kloe/ppg/ppg_2010/ppg_2010.html

    10.17182/hepdata.96268.v1/t2

    Statistical covariance matrix for differential cross section for $e^+e^-\rightarrow\pi^+\pi^-\gamma$, with $50^o<\theta_\gamma<130^o$

  • Differential cross-section, inverse of statistical covariance

    Data from https://www.lnf.infn.it/kloe/ppg/ppg_2010/ppg_2010.html

    10.17182/hepdata.96268.v1/t3

    Inverse statistical covariance matrix for differential cross section for $e^+e^-\rightarrow\pi^+\pi^-\gamma$, with $50^o<\theta_\gamma<130^o$

  • Differential cross-section systematic uncertainties

    Table 7 in additional documentation KLOE Note 225 (http://www.lnf.infn.it/kloe/ppg/ppg_2010/kn225.pdf)

    10.17182/hepdata.96268.v1/t4

    Breakdown of syst. uncertainties (fully bin-by-bin correlated) for differential cross section for $e^+e^-\rightarrow\pi^+\pi^-\gamma$, with $50^o<\theta_\gamma<130^o$

  • Bare cross-section

    Data from Fig. 3, Right and Table 2

    10.17182/hepdata.96268.v1/t5

    Bare cross section for $e^+e^-\rightarrow\pi^+\pi^-$

  • Bare cross-section statistical covariance

    Data from https://www.lnf.infn.it/kloe/ppg/ppg_2010/ppg_2010.html

    10.17182/hepdata.96268.v1/t6

    Statistical covariance matrix for bare cross section for $e^+e^-\rightarrow\pi^+\pi^-$

  • Bare cross-section, inverse of statistical covariance

    Data from https://www.lnf.infn.it/kloe/ppg/ppg_2010/ppg_2010.html

    10.17182/hepdata.96268.v1/t7

    Inverse statistical covariance matrix for bare cross section for $e^+e^-\rightarrow\pi^+\pi$

  • Bare cross-section systematic uncertainties

    Table 7 in additional documentation KLOE Note 225 (http://www.lnf.infn.it/kloe/ppg/ppg_2010/kn225.pdf)

    10.17182/hepdata.96268.v1/t8

    Breakdown of syst. uncertainties (fully bin-by-bin correlated) for the cross section for $e^+e^-\rightarrow\pi^+\pi^-$

  • Pion form factor

    Data from Fig. 4 and Table 2

    10.17182/hepdata.96268.v1/t9

    Pion form factor $|F_\pi|^2$

  • Pion form factor statistical covariance

    Data from https://www.lnf.infn.it/kloe/ppg/ppg_2010/ppg_2010.html

    10.17182/hepdata.96268.v1/t10

    Statistical covariance matrix for pion form factor $|F_\pi|^2$

  • Pion form factor, inverse of statistical covariance

    Data from https://www.lnf.infn.it/kloe/ppg/ppg_2010/ppg_2010.html

    10.17182/hepdata.96268.v1/t11

    Inverse statistical covariance matrix $|F_\pi|^2$

  • Pion form factor systematic uncertainties

    Table 7 in additional documentation KLOE Note 225 (http://www.lnf.infn.it/kloe/ppg/ppg_2010/kn225.pdf)

    10.17182/hepdata.96268.v1/t12

    Breakdown of syst. uncertainties (fully bin-by-bin correlated) for the pion form factor $|F_\pi|^2$

  • Vacuum polarisation correction

    Data from Figure 71 in additional documentation KLOE Note 225

    10.17182/hepdata.96268.v1/t13

    Vacuum polarisation correction $\delta_{VP}(s)=(\frac{\alpha_{em}(s)}{\alpha_{em}(0)})^2$, with $\sigma^{bare} = \sigma^{dressed}/\delta$ - calculated using the routine from F.Jegerlehner: https://web.archive.org/web/20170828074416/http://www-com.physik.hu-berlin.de/~fjeger/alphaQEDn.uu (2003, archived on August...

  • Final State Radiation correction

    FSR correction in equation (4)

    10.17182/hepdata.96268.v1/t14

    Final State Radiation correction $(1.+\eta_{FSR}(s))$, evaluated using the formula in Eur. Phys. J. C 24, 51-69 (2002)

  • ISR radiator function

    Data from Figure 66 in additional documentation KLOE Note 225

    10.17182/hepdata.96268.v1/t15

    The differential radiator function cross section $H(M_{\pi\pi}^2,s)\cdot \frac{\pi \alpha^2 \beta_\pi^3}{3 M_{\pi\pi}^2 s}$, inclusive in $\theta_\gamma$, in bins of 0.01 GeV$^2$...

Loading Data...

Ask a Question


Your question will be emailed to those involved with the submission. Please mention the relevant table.


Please log in to HEPData to send a question.