The double strangeness exchange reaction ( K − , K + ) is investigated with respect to the sub-threshold production of scalar and vector mesons ( f 0 / a 0 / φ ) decaying into K + K − and the two-step processes induced by intermediate mesons and Ξ − hyperons at p k − = 1.66 GeV/ c using a scintillating fiber active target. The differential cross section ( 〈 dσ dΩ L 〉) averaged over the angular interval (2.3° ⩽ θ K + L ⩽ 14.7°) for the sub-threshold f 0 / a 0 / φ meson production with the K + K − decay is 11 ± 6 μ b/sr at 0.6 ⩽ p K 1 < 0.95 GeV/ c . The present result differs significantly from the theoretical calculation which predicts the contribution of the f 0 / a 0 / φ meson production to be predominant in the ( K − , K + ) reaction below p K + = 0.95 GeV/ c . We found a sizable contribution from two-step ( K − , K + processes, characterized by production of two S = −1 hyperons, consistent with the result of the intra-nuclear cascade (INC) model calculation with respect to the meson-induced hyperon (or hyperon resonance) pair production in the momentum region 0.6 ⩽ p K + < 0.95 GeV/ c . The observed enhancement of the cross section for the two-step ΛΛ production beyond the prediction of the INC model at p K + ⋍ 1.1 GeV /c could be due to the Ξ − p → ΛΛ reaction in 12 C.
No description provided.
No description provided.
No description provided.
The experimental setup and detection technique of the COSY-11 installation, an internal experimental facility at the cooler synchrotron and storage ring COSY Jülich, are described. The detection system has been designed for meson production studies with full geometrical acceptance close to threshold. Preliminary results of first measurements are presented, emphasis is put on strangeness production in the reactions pp → ppK + K − and pp → pK + Λ .
Excess energy of 6.1 MeV above threshold 3.3016 GeV.
Excess energy of 2 MeV above threshold 2.339 GeV.
The quasifree p+n→d+η reaction cross section has been measured in the near-threshold region using deuterium from an internal cluster-jet target and 1350 MeV protons in the CELSIUS storage ring of the The Svedberg Laboratory, Uppsala. The energy dependence of the cross section is extracted by exploiting the Fermi momentum of the target neutron and reconstructing the kinematics on an event-by-event basis. The data cover center of mass excess energies from 16 to 113 MeV.
No description provided.
First results are reported on J ψ and Drell-Yan cross-sections in PbPb reactions at 158 GeV/ c per nucleon. The ratio of cross-sections σ J/ψ /σ DY is studied as a function of the impact parameter of the collision estimated from the measured transverse energy.
No description provided.
No description provided.
The Drell-Yan cross sections are taken in the mass interval 2.9 to 4.5 GeV. SIG/SIG ratio are free from most systematic errors.
The relative production yields and transverse mass spectra for Λ, Λ , Ξ − and Ξ + hyperons in proton-tungsten interactions are presented and compared with the WA85 results from central sulphur-tungsten interactions. A study of the negative particle yield has also been undertaken and the ratio of Λ hyperons to negative particles has been calculated.
No description provided.
No description provided.
No description provided.
Inclusive cross sections for Ξ- hyperon production in high-energy Σ-, π- and neutron induced interactions were measured by the experiment WA89 at CERN. Secondary Σ- and π- beams with average momenta of 345 GeV/c and a neutron beam of 260 GeV/c were produced by primary protons of 450 GeV/c from the CERN SPS. The influence of the target mass on the Ξ- cross section is explored by comparing reactions on copper and carbon nuclei. Both single and double differential cross sections are presented as a function of the transverse momentum and the Feynman variable xF. A strong leading effect for Σ- produced by Σ- is observed.
No description provided.
No description provided.
No description provided.
We present an improved determination of the proton structure functions $F_{2}$ and $xF_{3}$ from the CCFR $\nu $-Fe deep inelastic scattering (DIS) experiment. Comparisons to high-statistics charged-lepton scattering results for $F_{2}$ from the NMC, E665, SLAC, and BCDMS experiments, after correcting for quark-charge and heavy-target effects, indicate good agreement for $x>0.1$ but some discrepancy at lower x. The $Q^{2}$ evolution of the structure functions yields the quantum chromodynamics (QCD) scale parameter $\Lambda_{\bar{MS}}^{NLO,(4)}=337 \pm 28$(exp.) MeV. This corresponds to a value of the strong coupling constant at the scale of mass of the Z-boson of $\alpha _{S}(M_{Z}^{2})=0.119 \pm 0.002 (exp.) \pm 0.004 (theory)$ and is one of the most precise measurements of this quantity.
No description provided.
No description provided.
No description provided.
We report the first observation of diffractively produced W bosons. In a sample of W -> e nu events produced in p-barp collisions at sqrt{s}=1.8 TeV, we find an excess of events with a forward rapidity gap, which is attributed to diffraction. The probability that this excess is consistent with non-diffractive production is 1.1 10^{-4} (3.8 sigma). The relatively low fraction of W+Jet events observed within this excess implies that mainly quarks from the pomeron, which mediates diffraction, participate in W production. The diffractive to non-diffractive W production ratio is found to be R_W=(1.15 +/- 0.55)%.
No description provided.
Using the ARGUS detector at the e + e − storage ring DORIS II at DESY, we have found evidence for the production of the excited charmed baryon state Λ c (2593) + in the channel Λ c + π + π − . Its mass was determined to be (2594.6±0.9±0.4) MeV/c 2 , and the natural width measured to be Γ = (2.9 −2.1−1.4 +2.9+1.8 ) MeV. The production cross section times the branching ratios of σ ( e + e − → Λ c (2593) + X ) × Br ( Λ c (2593) + → Λ c + π + π − ) × Br ( Λ c + → pK − π + ) was measured to be (0.25 −0.13 +0.24 ±0.13) pb. The fractions of Λ c (2593) + decays proceeding through the Σ c 0 π + and Σ c ++ π − channels were determined to be 0.29±0.10±0.11 and 0.37±0.12±0.13, respectively.
Results with and without extrapolation.
In 1996 LEP ran at a centre-of-mass energy of 161 GeV, just above the threshold of W-pair production. DELPHI accumulated data corresponding to an integrated luminosity of 9.93 pb −1 , and observed 29 events that are considered as candidates for W-pair production. From these, a cross-section for the doubly resonant e + e − → WW process of 3.67 −0.85 +0.97 ± 0.19 pb has been measured. Within the Standard Model, this cross-section corresponds to a mass of the W-boson of 80.40 ± 0.44 (stat.) ± 0.09 (syst.) ± 0.03 (LEP) GeV/ c 2 . Alternatively, if m W is held fixed at its current value determined by other experiments, the observed cross-section is used to obtain limits on trilinear WWV (V ≡ γ, Z) couplings.
No description provided.