A search is presented for standard model (SM) production of four top quarks (t t-bar t t-bar) in pp collisions in the lepton + jets channel. The data correspond to an integrated luminosity of 19.6 inverse femtobarns recorded at a centre-of-mass energy of 8 TeV with the CMS detector at the CERN LHC. The expected cross section for SM four top quark production is approximately 1 fb. A combination of kinematic reconstruction and multivariate techniques is used to distinguish between the small signal and large background. The data are consistent with expectations of the SM, and an upper limit of 32 fb is set at a 95% confidence level on the cross section for producing four top quarks in the SM, where a limit of 32 +/- 17 fb is expected.
The normalized differential cross section for top quark pair (tt-bar) production is measured in pp collisions at a centre-of-mass energy of 8 TeV at the CERN LHC using the CMS detector in data corresponding to an integrated luminosity of 19.7 inverse femtobarns. The measurements are performed in the lepton + jets (e/mu + jets) and in the dilepton (e+e-, mu+mu-, and e+-mu-+) decay channels. The tt-bar cross section is measured as a function of the kinematic properties of the charged leptons, the jets associated to b quarks, the top quarks, and the tt-bar system. The data are compared with several predictions from perturbative quantum chromodynamics up to approximate next-to-next-to-leading-order precision. No significant deviations are observed relative to the standard model predictions.
The differential cross sections for the production of photons in Z to mu+ mu- gamma decays are presented as a function of the transverse energy of the photon and its separation from the nearest muon. The data for these measurements were collected with the CMS detector and correspond to an integrated luminosity of 4.7 inverse femtobarns of pp collisions at sqrt(s) = 7 TeV delivered by the CERN LHC. The cross sections are compared to simulations with POWHEG and PYTHIA, where PYTHIA is used to simulate parton showers and final-state photons. These simulations match the data to better than 5%.
The production of J/psi and Upsilon mesons in pp collisions at sqrt(s) = 8 TeV is studied with the LHCb detector. The J/psi and Upsilon mesons are reconstructed in the mu+mu- decay mode and the signal yields are determined with a fit to the mu+mu- invariant mass distributions. The analysis is performed in the rapidity range 2.0<y<4.5 and transverse momentum range 0<p_T<14(15) GeV/c of the J/psi(Upsilon) mesons. The J/psi and Upsilon production cross-sections and the fraction of J/psi mesons from b-hadron decays are measured as a function of the meson p_T and y.
The production of J/psi mesons is studied with the LHCb detector using data from pp collisions at sqrt(s)=2.76 TeV corresponding to an integrated luminosity of 71 nb^-1. The differential cross-section for inclusive J/psi production is measured as a function of its transverse momentum pT. The cross-section in the fiducial region 0<pT<12 GeV/c and rapidity 2.0<y<4.5 is measured to be 5.6 +/- 0.1(stat) +/- 0.4 (syst) mub, with the assumption of unpolarised J/psi production. The fraction of J/psi production from b-hadron decays is measured to be (7.1 +/- 0.6 (stat) +/- 0.7 (syst)) %.
This Letter presents the first search for a heavy particle decaying into an e\mu final state in sqrt(s)=7 TeV pp collisions at the LHC. The data were recorded by the ATLAS detector during 2010 and correspond to a total integrated luminosity of 35/pb. No excess above the Standard Model background expectation is observed. Exclusions at 95% confidence level are placed on two representative models. In an R-parity violating supersymmetric model, tau sneutrinos with a mass below 0.75 TeV are excluded, assuming single coupling dominance and the couplings lambda'_{311}=0.11, lambda_{312}=0.07. In a lepton flavor violating model, a Z'-like vector boson with masses of 0.70 to 1.00 TeV and corresponding cross sections times branching ratios of 0.175 to 0.183 pb is excluded. These results extend to higher mass RPV sneutrinos and LFV Z's than previous constraints from the Tevatron.
A measurement is presented of the charged hadron multiplicity in hadronic PbPb collisions, as a function of pseudorapidity and centrality, at a collision energy of 2.76 TeV per nucleon pair. The data sample is collected using the CMS detector and a minimum-bias trigger, with the CMS solenoid off. The number of charged hadrons is measured both by counting the number of reconstructed particle hits and by forming hit doublets of pairs of layers in the pixel detector. The two methods give consistent results. The charged hadron multiplicity density dN(ch)/d eta, evaluated at eta=0 for head-on collisions, is found to be 1612 +/- 55, where the uncertainty is dominated by systematic effects. Comparisons of these results to previous measurements and to various models are also presented.
Measurements of jet activity in top-quark pair events produced in proton--proton collisions are presented, using 3.2 fb$^{-1}$ of $pp$ collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS experiment at the Large Hadron Collider. Events are chosen by requiring an opposite-charge $e\mu$ pair and two $b$-tagged jets in the final state. The normalised differential cross-sections of top-quark pair production are presented as functions of additional-jet multiplicity and transverse momentum, $p_{\mathrm T}$. The fraction of signal events that do not contain additional jet activity in a given rapidity region, the gap fraction, is measured as a function of the $p_{\mathrm T}$ threshold for additional jets, and is also presented for different invariant mass regions of the $e\mu b\bar{b}$ system. All measurements are corrected for detector effects and presented as particle-level distributions compared to predictions with different theoretical approaches for QCD radiation. While the kinematics of the jets from top-quark decays are described well, the generators show differing levels of agreement with the measurements of observables that depend on the production of additional jets.
For the first time, a search for the rare decay of the W boson to three charged pions has been performed. Proton-proton collision data recorded by the CMS experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 77.3 fb$^{-1}$, have been analyzed. No significant excess is observed above the background expectation. An upper limit of 1.01 $\times$ 10$^{-6}$ is set at 95% confidence level on the branching fraction of the W boson to three charged pions. This provides a strong motivation for theoretical calculations of this branching fraction.
The first observation of $Z$ boson production in proton-lead collisions at a centre-of-mass energy per proton-nucleon pair of $\sqrt{s_{NN}}=5~\text{TeV}$ is presented. The data sample corresponds to an integrated luminosity of $1.6~\text{nb}^{-1}$ collected with the LHCb detector. The $Z$ candidates are reconstructed from pairs of oppositely charged muons with pseudorapidities between 2.0 and 4.5 and transverse momenta above $20~\text{GeV}/c$. The invariant dimuon mass is restricted to the range $60-120~\text{GeV}/c^2$. The $Z$ production cross-section is measured to be \begin{eqnarray*} \sigma_{Z\to\mu^+\mu^-}(\text{fwd})&=&13.5^{+5.4}_{-4.0}\text{(stat.)}\pm1.2\text{(syst.)}~\text{nb} \end{eqnarray*} in the direction of the proton beam and \begin{eqnarray*} \sigma_{Z\to\mu^+\mu^-}(\text{bwd}) & =&10.7^{+8.4}_{-5.1}\text{(stat.)}\pm1.0\text{(syst.)}~\text{nb} \end{eqnarray*} in the direction of the lead beam, where the first uncertainty is statistical and the second systematic.