Symmetry plane correlations in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adler, A. ; et al.
Eur.Phys.J.C 83 (2023) 576, 2023.
Inspire Record 2628969 DOI 10.17182/hepdata.141027

A newly developed observable for correlations between symmetry planes, which characterize the direction of the anisotropic emission of produced particles, is measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV with ALICE. This so-called Gaussian Estimator allows for the first time the study of these quantities without the influence of correlations between different flow amplitudes. The centrality dependence of various correlations between two, three and four symmetry planes is presented. The ordering of magnitude between these symmetry plane correlations is discussed and the results of the Gaussian Estimator are compared with measurements of previously used estimators. The results utilizing the new estimator lead to significantly smaller correlations than reported by studies using the Scalar Product method. Furthermore, the obtained symmetry plane correlations are compared to state-of-the-art hydrodynamic model calculations for the evolution of heavy-ion collisions. While the model predictions provide a qualitative description of the data, quantitative agreement is not always observed, particularly for correlators with significant non-linear response of the medium to initial state anisotropies of the collision system. As these results provide unique and independent information, their usage in future Bayesian analysis can further constrain our knowledge on the properties of the QCD matter produced in ultrarelativistic heavy-ion collisions.

9 data tables

Centrality dependence of $\langle \cos[4(\Psi_{4}-\Psi_{2})]\rangle_{\mathrm{GE}}$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.

Centrality dependence of $\langle \cos[6(\Psi_{6}-\Psi_{3})]\rangle_{\mathrm{GE}}$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.

Centrality dependence of $\langle \cos[6(\Psi_{2}-\Psi_{3})]\rangle_{\mathrm{GE}}$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.

More…

Dielectron production at midrapidity at low transverse momentum in peripheral and semi-peripheral Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adler, A. ; et al.
JHEP 06 (2023) 024, 2023.
Inspire Record 2071861 DOI 10.17182/hepdata.134246

The first measurement of the ${\rm e}^{+}{\rm e}^{-}$ pair production at low lepton pair transverse momentum ($p_{\rm T,ee}$) and low invariant mass ($m_{\rm ee}$) in non-central Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at the LHC is presented. The dielectron production is studied with the ALICE detector at midrapidity ($|\eta_{\rm e}| < 0.8$) as a function of invariant mass ($0.4 \leq m_{\rm ee} < 2.7$ GeV/$c^2$) in the 50$-$70% and 70$-$90% centrality classes for $p_{\rm T,ee} < 0.1$ GeV/$c$, and as a function of $p_{\rm T,ee}$ in three $m_{\rm ee}$ intervals in the most peripheral Pb$-$Pb collisions. Below a $p_{\rm T,ee}$ of 0.1 GeV/$c$, a clear excess of ${\rm e}^{+}{\rm e}^{-}$ pairs is found compared to the expectations from known hadronic sources and predictions of thermal radiation from the medium. The $m_{\rm ee}$ excess spectra are reproduced, within uncertainties, by different predictions of the photon$-$photon production of dielectrons, where the photons originate from the extremely strong electromagnetic fields generated by the highly Lorentz-contracted Pb nuclei. Lowest-order quantum electrodynamic (QED) calculations, as well as a model that takes into account the impact-parameter dependence of the average transverse momentum of the photons, also provide a good description of the $p_{\rm T,ee}$ spectra. The measured $\sqrt{\langle p_{\rm T,ee}^{2} \rangle}$ of the excess $p_{\rm T,ee}$ spectrum in peripheral Pb$-$Pb collisions is found to be comparable to the values observed previously at RHIC in a similar phase-space region.

10 data tables

Differential $e^+e^-$ yield in 50--70\% Pb--Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV as a function of $m_{\rm ee}$ for $p_{\rm T,ee} < 0.1$ GeV/$c$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$. The quoted upper limits correspond to a 90% confidence level.

Differential $e^+e^-$ yield in 70--90\% Pb--Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV as a function of $m_{\rm ee}$ for $p_{\rm T,ee} < 0.1$ GeV/$c$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$.

Differential excess $e^+e^-$ yield in 50--70\% Pb--Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV as a function of $m_{\rm ee}$ for $p_{\rm T,ee} < 0.1$ GeV/$c$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$. The quoted upper limits correspond to a 90% confidence level.

More…

Underlying-event properties in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adler, A. ; et al.
JHEP 06 (2023) 023, 2023.
Inspire Record 2071174 DOI 10.17182/hepdata.133032

We report about the properties of the underlying event measured with ALICE at the LHC in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. The event activity, quantified by charged-particle number and summed-$p_{\rm T}$ densities, is measured as a function of the leading-particle transverse momentum ($p_{\rm T}^{\rm trig}$). These quantities are studied in three azimuthal-angle regions relative to the leading particle in the event: toward, away, and transverse. Results are presented for three different $p_{\rm T}$ thresholds (0.15, 0.5, and 1 GeV/$c$) at mid-pseudorapidity ($|\eta|<0.8$). The event activity in the transverse region, which is the most sensitive to the underlying event, exhibits similar behaviour in both pp and p$-$Pb collisions, namely, a steep increase with $p_{\rm T}^{\rm trig}$ for low $p_{\rm T}^{\rm trig}$, followed by a saturation at $p_{\rm T}^{\rm trig} \approx 5$ GeV/$c$. The results from pp collisions are compared with existing measurements at other centre-of-mass energies. The quantities in the toward and away regions are also analyzed after the subtraction of the contribution measured in the transverse region. The remaining jet-like particle densities are consistent in pp and p$-$Pb collisions for $p_{\rm T}^{\rm trig}>10$ GeV/$c$, whereas for lower $p_{\rm T}^{\rm trig}$ values the event activity is slightly higher in p$-$Pb than in pp collisions. The measurements are compared with predictions from the PYTHIA 8 and EPOS LHC Monte Carlo event generators.

10 data tables

Fig. 4: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Transverse, Away, and Toward regions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

Fig. 5: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Transverse, Away, and Toward regions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

Fig. 6a: Number density $N_{\rm ch}$ (left) and $\Sigma p_{\rm T}$ (right) distributions as a function of $p_{\rm T}^{\rm trig}$ in Away and Toward regions after the subtraction of Number density $N_{\rm ch}$ and $\Sigma p_{\rm T}$ distributions in the transverse region for pp collisions for $p_{\rm T} >$ 0.5 GeV/$c$. The shaded areas and the error bars around the data points represent the systematic and statistical uncertainties, respectively.

More…

Direct observation of the dead-cone effect in QCD

The ALICE collaboration Acharya, S. ; Acharya, S. ; Adamova, D. ; et al.
Nature 605 (2022) 440-446, 2022.
Inspire Record 1867966 DOI 10.17182/hepdata.130725

In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD). These partons subsequently emit further partons in a process that can be described as a parton shower which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass $m_{\rm{Q}}$ and energy $E$, within a cone of angular size $m_{\rm{Q}}$/$E$ around the emitter. Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics.

1 data table

The $R(\theta)$ variable for charm/inclusive emissions in three bins of $E_{Rad}$: 5-10, 10-20 and 20-35 GeV.


Production of $\Lambda$ and ${\rm K}^{0}_{\rm S}$ in jets in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5$ TeV and pp collisions at $\sqrt{s} = 7$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 827 (2022) 136984, 2022.
Inspire Record 2048607 DOI 10.17182/hepdata.129068

The production of $\Lambda$ baryons and ${\rm K}^{0}_{\rm S}$ mesons (${\rm V}^{0}$ particles) was measured in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV and pp collisions at $\sqrt{s} = 7$ TeV with ALICE at the LHC. The production of these strange particles is studied separately for particles associated with hard scatterings and the underlying event to shed light on the baryon-to-meson ratio enhancement observed at intermediate transverse momentum ($p_{\rm T}$) in high multiplicity pp and p-Pb collisions. Hard scatterings are selected on an event-by-event basis with jets reconstructed with the anti-$k_{\rm T}$ algorithm using charged particles. The production of strange particles associated with jets $p_{\rm T,\;jet}^{\rm ch}>10$ and $p_{\rm T,\;jet}^{\rm ch}>20$ GeV/$c$ in p-Pb collisions, and with jet $p_{\rm T,\;jet}^{\rm ch}>10$ GeV/$c$ in pp collisions is reported as a function of $p_{\rm T}$. Its dependence on angular distance from the jet axis, $R({\rm V}^{0},\;{\rm jet})$, for jets with $p_{\rm T,\;jet}^{\rm ch}>10$ GeV/$c$ in p-Pb collisions is reported as well. The $p_{\rm T}$-differential production spectra of strange particles associated with jets are found to be harder compared to that in the underlying event and both differ from the inclusive measurements. In events containing a jet, the density of the ${\rm V}^{0}$ particles in the underlying event is found to be larger than the density in the minimum bias events. The $\Lambda/{\rm K}^{0}_{\rm S}$ ratio associated with jets in p-Pb collisions is consistent with the ratio in pp collisions and follows the expectation of jets fragmenting in vacuum. On the other hand, this ratio within jets is consistently lower than the one obtained in the underlying event and it does not show the characteristic enhancement of baryons at intermediate $p_{\rm T}$ often referred to as "baryon anomaly" in the inclusive measurements.

11 data tables

$p_{\rm T}$-differential density of inclusive ${\rm V}^{0}$ particles in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV.

$p_{\rm T}$-differential density of ${\rm V}^{0}$ particles in underlying events (perp. cone) in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV.

$p_{\rm T}$-differential densities of ${\rm V}^{0}$ particles selected with $R({\rm V}^{0},{\rm jet}) < 0.4$ and that produced in jets in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.

More…

Energy dependence of $\phi$ meson production at forward rapidity in pp collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 81 (2021) 772, 2021.
Inspire Record 1861688 DOI 10.17182/hepdata.110876

The production of $\phi$ mesons has been studied in pp collisions at LHC energies with the ALICE detector via the dimuon decay channel in the rapidity region $2.5 < y < 4$. Measurements of the differential cross section ${\rm d}^2\sigma/{\rm d}y {\rm d}p_{\rm T}$ are presented as a function of the transverse momentum ($p_{\rm T}$) at the center-of-mass energies $\sqrt{s}=5.02$, 8 and 13 TeV and compared with the ALICE results at midrapidity. The differential cross sections at $\sqrt{s}=5.02$ and 13 TeV are also studied in several rapidity intervals as a function of $p_{\rm T}$, and as a function of rapidity in three $p_{\rm T}$ intervals. A hardening of the $p_{\rm T}$-differential cross section with the collision energy is observed, while, for a given energy, $p_{\rm T}$ spectra soften with increasing rapidity and, conversely, rapidity distributions get slightly narrower at increasing $p_{\rm T}$. The new results, complementing the published measurements at $\sqrt{s}=2.76$ and 7 TeV, allow one to establish the energy dependence of $\phi$ meson production and to compare the measured cross sections with phenomenological models. None of the considered models manages to describe the evolution of the cross section with $p_{\rm T}$ and rapidity at all the energies.

19 data tables

$\phi$ meson production cross section $\mathrm{d}^2\sigma/(\mathrm{d}y\mathrm{d}p_\mathrm{T})$ as a function of $p_\mathrm{T}$ at $\sqrt{s}=5.02$ TeV at forward rapidity in pp collisions.

$\phi$ meson production cross section $\mathrm{d}^2\sigma/(\mathrm{d}y\mathrm{d}p_\mathrm{T})$ as a function of $p_\mathrm{T}$ at $\sqrt{s}=8$ TeV at forward rapidity in pp collisions.

$\phi$ meson production cross section $\mathrm{d}^2\sigma/(\mathrm{d}y\mathrm{d}p_\mathrm{T})$ as a function of $p_\mathrm{T}$ at $\sqrt{s}=13$ TeV at forward rapidity in pp collisions.

More…

Exploring the N$\Lambda$-N$\Sigma$ coupled system with high precision correlation techniques at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 833 (2022) 137272, 2022.
Inspire Record 1857549 DOI 10.17182/hepdata.131625

The interaction of $\Lambda$ and $\Sigma$ hyperons (Y) with nucleons (N) is strongly influenced by the coupled-channel dynamics. Due to the small mass difference of the $\rm N \Lambda$ and $\rm N \Sigma$ systems, the sizeable coupling strength of the $\rm N \Sigma\leftrightarrow N \Lambda$ processes constitutes a crucial element in the determination of the N$\Lambda$ interaction. In this letter we present the most precise measurements on the interaction of p$\Lambda$ pairs, from zero relative momentum up to the opening of the $\rm N \Sigma$ channel. The correlation function in the relative momentum space for $\mathrm{p}\Lambda\oplus\overline{\mathrm{p}}\overline{\Lambda}$ pairs measured in high-multiplicity triggered pp collisions at $\sqrt{s}~=~13$ TeV at the LHC is reported. The opening of the inelastic N$\Sigma$ channels is visible in the extracted correlation function as a cusp-like structure occurring at relative momentum $k^{*}$ = 289 MeV/$c$. This represents the first direct experimental observation of the $\rm N \Sigma\rightarrow N \Lambda$ coupled channel in the p$\Lambda$ system. The correlation function is compared with recent chiral effective field theory calculations, based on different strengths of the $\rm N \Sigma\leftrightarrow N \Lambda$ transition potential. A weaker coupling, as possibly supported by the present measurement, would require a more repulsive three-body NN$\Lambda$ interaction for a proper description of the $\Lambda$ in-medium properties, which has implications on the nuclear equation of state and for the presence of hyperons inside neutron stars.

1 data table

p-$\Lambda$ correlation function in high-multiplicity pp collisions at $\sqrt{s}=13$ TeV.


Nuclear modification factor of light neutral-meson spectra up to high transverse momentum in p-Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 827 (2022) 136943, 2022.
Inspire Record 1856529 DOI 10.17182/hepdata.128138

Neutral pion ($\pi^{0}$) and $\eta$ meson production cross sections were measured up to unprecedentedly high transverse momenta ($p_{\rm T}$) in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV. The mesons were reconstructed via their two-photon decay channel in the rapidity interval $-1.3< y <0.3$ in the ranges of $0.4<p_{\rm T}<200$ GeV/$c$ and $1.0<p_{\rm T}<50$ GeV/$c$, respectively. The respective nuclear modification factor ($R_{\rm pPb}$) is presented for $p_{\rm T}$ up to of 200 and 30 GeV/$c$, where the former was achieved by extending the $\pi^{0}$ measurement in pp collisions at $\sqrt{s}$ = 8 TeV using the merged cluster technique. The values of $R_{\rm pPb}$ are below unity for $p_{\rm T}<10$ GeV/$c$, while they are consistent with unity for $p_{\rm T}>10$ GeV/$c$, leaving essentially no room for final state energy loss. The new data provide strong constraints for nuclear parton distribution and fragmentation functions over a broad kinematic range and are compared to model predictions as well as previous results at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.

8 data tables

Invariant differential cross section of PI0 produced in inelastic p-Pb collisions at a centre-of-mass energy per nucleon of 8.16 TeV, the uncertainty of $\sigma_\mbox{MB}$ of 1.9% is not included in the systematic error.

Invariant differential cross section of PI0 produced in inelastic pp collisions at a centre-of-mass energy of 8 TeV, the uncertainty of $\sigma_\mbox{MB}$ of 2.6% is not included in the systematic error.

Invariant differential cross section of ETA produced in inelastic p-Pb collisions at a centre-of-mass energy per nucleon of 8.16 TeV, the uncertainty of $\sigma_\mbox{MB}$ of 1.9% is not included in the systematic error.

More…

Measurement of beauty and charm production in pp collisions at $\sqrt{s}=5.02$ TeV via non-prompt and prompt D mesons

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 05 (2021) 220, 2021.
Inspire Record 1848990 DOI 10.17182/hepdata.105047

The $p_\mathrm{T}$-differential production cross sections of prompt and non-prompt (produced in beauty-hadron decays) D mesons were measured by the ALICE experiment at midrapidity ($|y|<0.5$) in proton--proton collisions at $\sqrt{s}=5.02~\mathrm{TeV}$. The data sample used in the analysis corresponds to an integrated luminosity of $(19.3\pm0.4)~\mathrm{nb^{-1}}$. D mesons were reconstructed from their decays $\mathrm{D^0 \to K^-\pi^+}$, $\mathrm{D^+\to K^-\pi^+\pi^+}$, and $\mathrm{D_s^+\to \phi\pi^+\to K^-K^+\pi^+}$ and their charge conjugates. Compared to previous measurements in the same rapidity region, the cross sections of prompt $\mathrm{D^+}$ and $\mathrm{D_s^+}$ mesons have an extended $p_\mathrm{T}$ coverage and total uncertainties reduced by a factor ranging from 1.05 to 1.6, depending on $p_\mathrm{T}$, allowing for a more precise determination of their $p_\mathrm{T}$-integrated cross sections. The results are well described by perturbative QCD calculations. The fragmentation fraction of heavy quarks to strange mesons divided by the one to non-strange mesons, $f_\mathrm{s}/(f_\mathrm{u}+f_\mathrm{d})$, is compatible for charm and beauty quarks and with previous measurements at different centre-of-mass energies and collision systems. The $\mathrm{b\overline{b}}$ production cross section per rapidity unit at midrapidity, estimated from non-prompt D-meson measurements, is $\mathrm{d}\sigma_\mathrm{b\overline{b}}/\mathrm{d} y|_\mathrm{|y|<0.5} = 34.5 \pm 2.4 (\mathrm{stat.}) ^{+4.7}_{-2.9} (\mathrm{tot. syst.})~\mu\mathrm{b}$. It is compatible with previous measurements at the same centre-of-mass energy and with the cross section predicted by perturbative QCD calculations.

17 data tables

$p_\mathrm{T}$-differential production cross section of non-prompt $\mathrm{D^0}$ mesons in pp collision at $\sqrt{s}=5.02~\mathrm{TeV}$ in the rapidity interval $|y|<0.5$. Branching ratio of $\mathrm{D^0 \to K^-\pi^+}$: 0.0395

$p_\mathrm{T}$-differential production cross section of non-prompt $\mathrm{D^+}$ mesons in pp collision at $\sqrt{s}=5.02~\mathrm{TeV}$ in the rapidity interval $|y|<0.5$. Branching ratio of $\mathrm{D^+\to K^-\pi^+\pi^+}$: 0.0938

$p_\mathrm{T}$-differential production cross section of non-prompt $\mathrm{D_{s}^{+}}$ mesons in pp collision at $\sqrt{s}=5.02~\mathrm{TeV}$ in the rapidity interval $|y|<0.5$. Branching ratio of $\mathrm{D_s^+\to \phi\pi^+\to K^-K^+\pi^+}$: 0.0224

More…

Measurements of mixed harmonic cumulants in Pb-Pb collisions at $\mathbf{\sqrt{{\textit s}_{\rm NN}}}=5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 818 (2021) 136354, 2021.
Inspire Record 1848215 DOI 10.17182/hepdata.105046

Correlations between moments of different flow coefficients are measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV recorded with the ALICE detector. These new measurements are based on multiparticle mixed harmonic cumulants calculated using charged particles in the pseudorapidity region $|\eta|<0.8$ with the transverse momentum range $0.2 < p_{\rm T} < 5.0$ GeV/$c$. The centrality dependence of correlations between two flow coefficients as well as the correlations between three flow coefficients, both in terms of their second moments, are shown. In addition, a collection of mixed harmonic cumulants involving higher moments of $v_2$ and $v_3$ is measured for the first time, where the characteristic signature of negative, positive and negative signs of four-, six- and eight-particle cumulants are observed, respectively. The measurements are compared to the hydrodynamic calculations using iEBE-VISHNU with AMPT and TRENTo initial conditions. It is shown that the measurements carried out using the LHC Run 2 data in 2015 have the precision to explore the details of initial-state fluctuations and probe the nonlinear hydrodynamic response of $v_2$ and $v_3$ to their corresponding initial anisotropy coefficients $\varepsilon_2$ and $\varepsilon_3$. These new studies on correlations between three flow coefficients as well as correlations between higher moments of two different flow coefficients will pave the way to tighten constraints on initial-state models and help to extract precise information on the dynamic evolution of the hot and dense matter created in heavy-ion collisions at the LHC.

9 data tables

Centrality dependence of $nMHC(v_2^2,v_3^2)$ in Pb-Pb collisions at 5.02 TeV.

Centrality dependence of $nMHC(v_2^2,v_4^2)$ in Pb-Pb collisions at 5.02 TeV.

Centrality dependence of $nMHC(v_3^2,v_4^2)$ in Pb-Pb collisions at 5.02 TeV.

More…