Measurements of normalized differential cross-sections for ttbar production in pp collisions at sqrt(s) = 7 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Rev.D 90 (2014) 072004, 2014.
Inspire Record 1304289 DOI 10.17182/hepdata.67128

Measurements of normalized differential cross-sections for top-quark pair production are presented as a~function of the top-quark transverse momentum, and of the mass, transverse momentum, and rapidity of the $t\bar{t}$ system, in proton--proton collisions at a~center-of-mass energy of $\sqrt{s}$ = 7 TeV. The dataset corresponds to an integrated luminosity of 4.6 fb$^{-1}$, recorded in 2011 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton+jets channel, requiring exactly one lepton and at least four jets with at least one of the jets tagged as originating from a~$b$-quark. The measured spectra are corrected for detector efficiency and resolution effects and are compared to several Monte Carlo simulations and theory calculations. The results are in fair agreement with the predictions in a~wide kinematic range. Nevertheless, data distributions are softer than predicted for higher values of the mass of the $t\bar{t}$ system and of the top-quark transverse momentum. The measurements can also discriminate among different sets of parton distribution functions.

8 data tables match query

Normalized differential cross-sections for the hadronically decaying top-quark PT. The cross-section in each bin is given as the integral of the normalized differential cross-section over the bin width, divided by the bin width. The calculation of the cross-sections in the last bins includes events falling outside of the bin edges, and the normalization is done within the quoted bin width. The full covariance matrice is provided in Table 5 below.

Normalized differential cross-sections for the mass of the ttbar system. The cross-section in each bin is given as the integral of the normalized differential cross-section over the bin width, divided by the bin width. The calculation of the cross-sections in the last bins includes events falling outside of the bin edges, and the normalization is done within the quoted bin width. The full covariance matrice is provided in Table 6 below.

Normalized differential cross-sections for the PT of the ttbar system. The cross-section in each bin is given as the integral of the normalized differential cross-section over the bin width, divided by the bin width. The calculation of the cross-sections in the last bins includes events falling outside of the bin edges, and the normalization is done within the quoted bin width. The full covariance matrice is provided in Table 7 below.

More…

Measurement of inclusive jet charged-particle fragmentation functions in Pb+Pb collisions at sqrt(s_NN) = 2.76 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 739 (2014) 320-342, 2014.
Inspire Record 1300152 DOI 10.17182/hepdata.64272

Measurements of charged-particle fragmentation functions of jets produced in ultra-relativistic nuclear collisions can provide insight into the modification of parton showers in the hot, dense medium created in the collisions. ATLAS has measured jets in $\sqrt{s_{NN}} = 2.76$ TeV Pb+Pb collisions at the LHC using a data set recorded in 2011 with an integrated luminosity of 0.14 nb$^{-1}$. Jets were reconstructed using the anti-$k_{t}$ algorithm with distance parameter values $R$ = 0.2, 0.3, and 0.4. Distributions of charged-particle transverse momentum and longitudinal momentum fraction are reported for seven bins in collision centrality for $R=0.4$ jets with $p_{{T}}^{\mathrm{jet}}> 100$ GeV. Commensurate minimum $p_{\mathrm{T}}$ values are used for the other radii. Ratios of fragment distributions in each centrality bin to those measured in the most peripheral bin are presented. These ratios show a reduction of fragment yield in central collisions relative to peripheral collisions at intermediate $z$ values, $0.04 \lesssim z \lesssim 0.2$ and an enhancement in fragment yield for $z \lesssim 0.04$. A smaller, less significant enhancement is observed at large $z$ and large $p_{\mathrm{T}}$ in central collisions.

80 data tables match query

Differences of D(Z) distributions in different centralities with respect to peripheral events for R = 0.3 jets. The errors represent combined statistical and systematic uncertainties.

Differences of D(Z) distributions in different centralities with respect to peripheral events for R = 0.2 jets. The errors represent combined statistical and systematic uncertainties.

D(z) distribution for R=0.4 jets.

More…

Centrality and rapidity dependence of inclusive jet production in $\sqrt{s_\mathrm{NN}} = 5.02$ TeV proton--lead collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 748 (2015) 392-413, 2015.
Inspire Record 1334140 DOI 10.17182/hepdata.67349

Measurements of the centrality and rapidity dependence of inclusive jet production in $\sqrt{s_\mathrm{NN}} = 5.02$ TeV proton--lead ($p$+Pb) collisions and the jet cross-section in $\sqrt{s} = 2.76$ TeV proton--proton collisions are presented. These quantities are measured in datasets corresponding to an integrated luminosity of 27.8 nb$^{-1}$ and 4.0 pb$^{-1}$, respectively, recorded with the ATLAS detector at the Large Hadron Collider in 2013. The $p$+Pb collision centrality was characterised using the total transverse energy measured in the pseudorapidity interval $-4.9 < \eta < -3.2$ in the direction of the lead beam. Results are presented for the double-differential per-collision yields as a function of jet rapidity and transverse momentum ($p_\mathrm{T}$) for minimum-bias and centrality-selected $p$+Pb collisions, and are compared to the jet rate from the geometric expectation. The total jet yield in minimum-bias events is slightly enhanced above the expectation in a $p_\mathrm{T}$-dependent manner but is consistent with the expectation within uncertainties. The ratios of jet spectra from different centrality selections show a strong modification of jet production at all $p_\mathrm{T}$ at forward rapidities and for large $p_\mathrm{T}$ at mid-rapidity, which manifests as a suppression of the jet yield in central events and an enhancement in peripheral events. These effects imply that the factorisation between hard and soft processes is violated at an unexpected level in proton-nucleus collisions. Furthermore, the modifications at forward rapidities are found to be a function of the total jet energy only, implying that the violations may have a simple dependence on the hard parton-parton kinematics.

171 data tables match query

The $R_{\mathrm{coll}}$ and $T_{p\mathrm{A}}$ values and their uncertainties in each centrality bin.

Per-event jet yields in 0-90% p+Pb collisions, within the centre of mass rapidity -2.1 to -1.2 (positive denotes downstream proton direction).

Per-event jet yields in 0-90% p+Pb collisions, within the centre of mass rapidity -1.2 to -0.8 (positive denotes downstream proton direction).

More…

Measurement of the production of a W boson in association with a charm quark in pp collisions at sqrt(s)=7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 05 (2014) 068, 2014.
Inspire Record 1282447 DOI 10.17182/hepdata.63197

The production of a W boson in association with a single charm quark is studied using 4.6 fb^-1 of pp collision data at sqrt(s)=7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96 +0.26 -0.30 at Q^2=1.9 GeV^2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio sigma(W^+ + bar{c})/sigma(W^- + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s-bar{s} quark asymmetry.

17 data tables match query

Measured integrated cross sections of the production of a W boson with a single c-jet, a D meson or a D* meson times the branching ratio W -> l nu in the fiducial regions together with the statistical and systematic uncertainties. For the W+c-jet cross sections events with more than one c-jet are discarded. The particle-level c-jet is defined as the one containing a weakly decaying c-hadron with pt>5 GeV, within DeltaR<0.3. Jets containing c-hadrons originating from b-hadron decays are not counted as c-jets. Jets are not required for the W+D/D* cross sections. The cross sections are defined for OS-SS events.

Measured integrated cross section ratios of the production of W+ and W- bosons associated with a single c-jet, a D meson or a D* meson in the fiducial regions together with the statistical and systematic uncertainties. For the W+c-jet cross sections events with more than one c-jet are discarded. The particle-level c-jet is defined as the one containing a weakly decaying c-hadron with pt>5 GeV, within DeltaR<0.3. Jets containing c-hadrons originating from b-hadron decays are not counted as c-jets. Jets are not required for the W+D/D* cross sections. The cross sections are defined for OS-SS events.

Measured differential cross sections as function of the lepton pseudo-rapidity of the production of a W boson with a single c-jet times the branching ratio W -> l nu in the fiducial regions together with the statistical and systematic uncertainties. For the W+c-jet cross sections events with more than one c-jet are discarded. The particle-level c-jet is defined as the one containing a weakly decaying c-hadron with pt>5 GeV, within DeltaR<0.3. Jets containing c-hadrons originating from b-hadron decays are not counted as c-jets. The cross sections are defined for OS-SS events.

More…

Measurement of the $Z/\gamma^*$ boson transverse momentum distribution in $pp$ collisions at $\sqrt{s}$ = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 145, 2014.
Inspire Record 1300647 DOI 10.17182/hepdata.64354

This paper describes a measurement of the $Z/\gamma^*$ boson transverse momentum spectrum using ATLAS proton-proton collision data at a centre-of-mass energy of $\sqrt{s}$ = 7 TeV at the LHC. The measurement is performed in the $Z/\gamma^* \rightarrow e^+e^-$ and $Z/\gamma^* \rightarrow \mu^+\mu^-$ channels, using data corresponding to an integrated luminosity of 4.7 fb$^{-1}$. Normalized differential cross sections as a function of the $Z/\gamma^*$ boson transverse momentum are measured for transverse momenta up to 800 GeV. The measurement is performed inclusively for $Z/\gamma^*$ rapidities up to 2.4, as well as in three rapidity bins. The channel results are combined, compared to perturbative and resummed QCD calculations and used to constrain the parton shower parameters of Monte Carlo generators.

3 data tables match query

The measured normalized cross section (1/SIG(FID))*D(SIG(FID))/DPT(Z) at the Born level in bins of PT(Z) for the Z/GAMMA* --> E+ E- and Z/GAMMA* --> MU+ MU- channels, and correction factors to the bare- and dressed-level cross sections. The relative statistical and total uncorrelated systematic uncertainties are given for each channel as well as the correlated systematic uncertainties.

The measured normalized combined (electron and muon channels) cross section (1/SIG(FID))*D(SIG(FID))/DPT(Z) inclusive in rapidity. The cross sections at Born and dressed levels are given as well as the relative statistical and total uncorrelated systematic uncertainties as well as the correlated systematic uncertainties.

The measured normalized combined (electron and muon channels) cross section (1/SIG(FID))*D(SIG(FID))/DPT(Z) for 0 <= ABS(YRAP(Z)) < 1, 1 <= ABS(YRAP(Z)) < 2 and 2 <= ABS(YRAP(Z)) < 2.4. The cross sections at Born and dressed levels are given as well as the relative statistical and systematic uncertainties for uncorrelated and correlated sources.


Measurements of $Z\gamma$ and $Z\gamma\gamma$ production in $pp$ collisions at $\sqrt{s}=$ 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 112002, 2016.
Inspire Record 1448301 DOI 10.17182/hepdata.72823

The production of $Z$ bosons with one or two isolated high-energy photons is studied using $pp$ collisions at $\sqrt{s}$ = 8 TeV. The analyses use a data sample with an integrated luminosity of 20.3 fb$^{-1}$ collected by the ATLAS detector during the 2012 LHC data taking. The $Z\gamma$ and $Z\gamma\gamma$ production cross sections are measured with leptonic ($e^{+}e^{-}$, $\mu^{+}\mu^{-}$, $\nu\bar{\nu}$) decays of the $Z$ boson, in extended fiducial regions defined in terms of the lepton and photon acceptance. They are then compared to cross-section predictions from the Standard Model, where the sources of the photons are radiation off initial-state quarks and radiative $Z$-boson decay to charged leptons, and from fragmentation of final-state quarks and gluons into photons. The yields of events with photon transverse energy $E_T >$ 250 GeV from $\ell^{+}\ell^{-}\gamma$ events and with $E_T >$ 400 GeV from $\nu\bar{\nu}\gamma$ events are used to search for anomalous triple gauge-boson couplings $ZZ\gamma$ and $Z\gamma\gamma$. The yields of events with diphoton invariant mass $m_{\gamma\gamma} >$ 200 GeV from $\ell^{+}\ell^{-}\gamma\gamma$ events and with $m_{\gamma\gamma} > $ 300 GeV from $\nu\bar{\nu}\gamma\gamma$ events are used to search for anomalous quartic gauge-boson couplings $ZZ\gamma\gamma$ and $Z\gamma\gamma\gamma$. No deviations from Standard Model predictions are observed and limits are placed on parameters used to describe anomalous triple and quartic gauge-boson couplings.

11 data tables match query

Measured integrated cross sections for the $Z\gamma$ process for charged lepton final states at $\sqrt{s} = 8$ TeV in the extended fiducial regions defined in the paper, table 5. The parton-to-particle correction factors are also shown, which are defined as the ratio of the cross sections at parton-level to the cross sections at particle-level.

Measured integrated cross sections for the $Z\gamma$ process for neutrino final states at $\sqrt{s} = 8$ TeV in the extended fiducial regions defined in the paper, table 5. The parton-to-particle correction factors are also shown, which are defined as the ratio of the cross sections at parton-level to the cross sections at particle-level.

Measured integrated cross sections for the $Z\gamma\gamma$ process for charged lepton final states at $\sqrt{s} = 8$ TeV in the extended fiducial regions defined in the paper, table 5. The parton-to-particle correction factors are also shown, which are defined as the ratio of the cross sections at parton-level to the cross sections at particle-level.

More…

Measurement of the differential cross-sections of prompt and non-prompt production of $J/\psi$ and $\psi(2\mathrm{S})$ in $pp$ collisions at $\sqrt{s} = 7$ and $8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 283, 2016.
Inspire Record 1409298 DOI 10.17182/hepdata.72721

The production rates of prompt and non-prompt $J/\psi$ and $\psi(2\mathrm{S})$ mesons are measured using 2.1 $fb^{-1}$ and 11.4 $fb^{-1}$ of data collected with the ATLAS experiment at the LHC, in proton-proton collisions at $\sqrt{s}=7$ and 8 TeV respectively. Production cross-sections for both prompt and non-prompt production sources, ratios of $\psi(2\mathrm{S})$ to $J/\psi$ production, and fractions of non-prompt to inclusive production for $J/\psi$ and $\psi(2\mathrm{S})$ are measured double-differentially as a function of meson $p_{T}$ and rapidity. These measurements are made in a restricted fiducial volume and also corrected for geometrical acceptance after which they are compared to a variety of theoretical predictions.

40 data tables match query

Summary of results for cross-section of prompt $J/\psi$ decaying to a muon pair for 7 TeV data in nb/GeV. Uncertainties are statistical and systematic, respectively.

Summary of results for cross-section of prompt $J/\psi$ decaying to a muon pair for 8 TeV data in nb/GeV. Uncertainties are statistical and systematic, respectively.

Summary of results for cross-section of non-prompt $J/\psi$ decaying to a muon pair for 7 TeV data in nb/GeV. Uncertainties are statistical and systematic, respectively.

More…

Measurement of the transverse momentum and $\phi^*_{\eta}$ distributions of Drell-Yan lepton pairs in proton-proton collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 291, 2016.
Inspire Record 1408516 DOI 10.17182/hepdata.71339

Distributions of transverse momentum $p_T^{ll}$ and the angular variable $\phi^*_\eta$ of Drell--Yan lepton pairs are measured in 20.3 fb$^{-1}$ of proton--proton collisions at $\sqrt{s}=8$ TeV with the ATLAS detector at the LHC. Measurements in electron-pair and muon-pair final states are corrected for detector effects and combined. Compared to previous measurements in proton--proton collisions at $\sqrt{s}=7$ TeV, these new measurements benefit from a larger data sample and improved control of systematic uncertainties. Measurements are performed in bins of lepton-pair mass above, around and below the Z-boson mass peak. The data are compared to predictions from perturbative and resummed QCD calculations. For values of $\phi^*_\eta < 1$ the predictions from the Monte Carlo generator ResBos are generally consistent with the data within the theoretical uncertainties. However, at larger values of $\phi^*_\eta$ this is not generally the case. Monte Carlo generators based on the parton-shower approach are unable to describe the data over the full range of $p_T^{ll}$ and the fixed-order prediction of DYNNLO falls below the data at high values of $p_T^{ll}$. ResBos and the parton-shower Monte Carlo generators provide a much better description of the evolution of the $\phi^*_\eta$ and $p_T^{ll}$ distributions as a function of lepton-pair mass and rapidity.

41 data tables match query

Fiducial cross sections at Born level in the electron- and muon-pair channels as well as the combined value. The statistical and systematic uncertainties are given as a percentage of the cross section. An additional uncertainty of 2.8% on the integrated luminosity, which is fully correlated between channels and among all $m_{\ell\ell}$ bins, pertains to these measurements. The individual uncertainty sources after the combination are not necessarily orthogonal and also do not include uncertainties uncorrelated between bins of $m_{\ell\ell}$. Therefore their quadratic sum may not give the total systematic uncertainty.

The values of $(1/\sigma)\,\mathrm{d}\sigma/\mathrm{d}\phi^*_{\eta}$ in each bin of $\phi^*_{\eta}$ for the electron and muon channels separately (for various particle-level definitions) and for the Born-level combination in the kinematic region $46\textrm{ GeV} \leq m_{\ell\ell} < 66\textrm{ GeV},\ 0 \leq |y_{\ell\ell}| < 0.8$. The associated statistical and systematic (both uncorrelated and correlated between bins of $\phi^*_{\eta}$) are provided in percentage form.

The values of $(1/\sigma)\,\mathrm{d}\sigma/\mathrm{d}\phi^*_{\eta}$ in each bin of $\phi^*_{\eta}$ for the electron and muon channels separately (for various particle-level definitions) and for the Born-level combination in the kinematic region $46\textrm{ GeV} \leq m_{\ell\ell} < 66\textrm{ GeV},\ 0.8 \leq |y_{\ell\ell}| < 1.6$. The associated statistical and systematic (both uncorrelated and correlated between bins of $\phi^*_{\eta}$) are provided in percentage form.

More…

Charged-particle distributions in $\sqrt{s}=13$ TeV $pp$ interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 758 (2016) 67-88, 2016.
Inspire Record 1419652 DOI 10.17182/hepdata.72491

Charged-particle distributions are measured in proton-proton collisions at a centre-of-mass energy of 13 TeV, using a data sample of nearly 9 million events, corresponding to an integrated luminosity of 170 $\mu$b$^{-1}$, recorded by the ATLAS detector during a special Large Hadron Collider fill. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on the charged-particle multiplicity are presented. The measurements are performed with charged particles with transverse momentum greater than 500 MeV and absolute pseudorapidity less than 2.5, in events with at least one charged particle satisfying these kinematic requirements. Additional measurements in a reduced phase space with absolute pseudorapidity less than 0.8 are also presented, in order to compare with other experiments. The results are corrected for detector effects, presented as particle-level distributions and are compared to the predictions of various Monte Carlo event generators.

18 data tables match query

The average charged-particle multiplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.

The extrapolated average charged-particle multiplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.

Charged-particle multiplicities in proton-proton collisions at a centre-of-mass energy of 13000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

More…

Measurement of the $ZZ$ production cross section in $pp$ collisions at $\sqrt{s}$ = 8 TeV using the $ZZ\to\ell^{-}\ell^{+}\ell^{\prime -}\ell^{\prime +}$ and $ZZ\to\ell^{-}\ell^{+}\nu\bar{\nu}$ channels with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2017) 099, 2017.
Inspire Record 1494075 DOI 10.17182/hepdata.76732

A measurement of the $ZZ$ production in the $\ell^{-}\ell^{+}\ell^{\prime -}\ell^{\prime +}$ and $\ell^{-}\ell^{+}\nu\bar{\nu}$ channels $(\ell = e, \mu)$ in proton--proton collisions at $\sqrt{s} = 8$ TeV at the Large Hadron Collider at CERN, using data corresponding to an integrated luminosity of 20.3 fb$^{-1}$ collected by the ATLAS experiment in 2012 is presented. The fiducial cross sections for $ZZ\to\ell^{-}\ell^{+}\ell^{\prime -}\ell^{\prime +}$ and $ZZ\to \ell^{-}\ell^{+}\nu\bar{\nu}$ are measured in selected phase-space regions. The total cross section for $ZZ$ events produced with both $Z$ bosons in the mass range 66 to 116 GeV is measured from the combination of the two channels to be $7.3\pm0.4\textrm{(stat)}\pm0.3\textrm{(syst)}\pm0.2\textrm{(lumi)}$ pb, which is consistent with the Standard Model prediction of $6.6^{+0.7}_{-0.6}$ pb. The differential cross sections in bins of various kinematic variables are presented. The differential event yield as a function of the transverse momentum of the leading $Z$ boson is used to set limits on anomalous neutral triple gauge boson couplings in $ZZ$ production.

8 data tables match query

The measured fiducial cross sections and the combined total cross section compared to the SM predictions. For experimental results, the statistical, systematic, and luminosity uncertainties are shown. For the theoretical predictions, the combined statistical and systematic uncertainty is shown.

The measured differential cross-section normalized to the bin width in values of the leading reconstructed dilepton pT for the 4 lepton channel. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties.

The measured differential cross-section normalized to the bin width in values of the number of reconstructed jets for the 4 lepton channel. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties.

More…