Version 2
Measurement of differential cross sections and $W^+/W^-$ cross-section ratios for $W$ boson production in association with jets at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 05 (2018) 077, 2018.
Inspire Record 1635273 DOI 10.17182/hepdata.80076

This paper presents a measurement of the $W$ boson production cross section and the $W^{+}/W^{-}$ cross-section ratio, both in association with jets, in proton--proton collisions at $\sqrt{s}=8$ TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is performed in final states containing one electron and missing transverse momentum using data corresponding to an integrated luminosity of 20.2 fb$^{-1}$. Differential cross sections for events with one or two jets are presented for a range of observables, including jet transverse momenta and rapidities, the scalar sum of transverse momenta of the visible particles and the missing transverse momentum in the event, and the transverse momentum of the $W$ boson. For a subset of the observables, the differential cross sections of positively and negatively charged $W$ bosons are measured separately. In the cross-section ratio of $W^{+}/W^{-}$ the dominant systematic uncertainties cancel out, improving the measurement precision by up to a factor of nine. The observables and ratios selected for this paper provide valuable input for the up quark, down quark, and gluon parton distribution functions of the proton.

0 data tables match query

Version 2
Charged-particle distributions at low transverse momentum in $\sqrt{s}$=13 TeV pp interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 76 (2016) 502, 2016.
Inspire Record 1467230 DOI 10.17182/hepdata.73907

Measurements of distributions of charged particles produced in proton-proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 $\mu$b$^{-1}$. The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators.

0 data tables match query

Measurement of the forward-backward asymmetry of electron and muon pair-production in $pp$ collisions at $\sqrt{s}$ = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2015) 049, 2015.
Inspire Record 1351916 DOI 10.17182/hepdata.76996

This paper presents measurements from the ATLAS experiment of the forward-backward asymmetry in the reaction $pp\rightarrow Z/\gamma^{*}\rightarrow l^{+}l^{-}$, with $l$ being electrons or muons, and the extraction of the effective weak mixing angle. The results are based on the full set of data collected in 2011 in $pp$ collisions at the LHC at $\sqrt{s}$ = 7 TeV, corresponding to an integrated luminosity of 4.8 fb$^{-1}$. The measured asymmetry values are found to be in agreement with the corresponding Standard Model predictions. The combination of the muon and electron channels yields a value of the effective weak mixing angle of $0.2308 \pm 0.0005 \mathrm{(stat.)} \pm 0.0006 \mathrm{(syst.)} \pm 0.0009\mathrm{(PDF)}$, where the first uncertainty corresponds to data statistics,the second to systematic effects and the third to knowledge of the parton density functions. This result agrees with the current world average from the Particle Data Group fit.

0 data tables match query

Measurement of quarkonium production in proton--lead and proton--proton collisions at $5.02$ $\mathrm{TeV}$ with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 171, 2018.
Inspire Record 1622737 DOI 10.17182/hepdata.82624

The modification of the production of $J/\psi$, $\psi(\mathrm{2S})$, and $\mit{\Upsilon}(n\mathrm{S})$ ($n = 1, 2, 3$) in $p$+Pb collisions with respect to their production in $pp$ collisions has been studied. The $p$+Pb and $pp$ datasets used in this paper correspond to integrated luminosities of $28$ $\mathrm{nb}^{-1}$ and $25$ $\mathrm{pb}^{-1}$ respectively, collected in 2013 and 2015 by the ATLAS detector at the LHC, both at a centre-of-mass energy per nucleon pair of 5.02 TeV. The quarkonium states are reconstructed in the dimuon decay channel. The yields of $J/\psi$ and $\psi(\mathrm{2S})$ are separated into prompt and non-prompt sources. The measured quarkonium differential cross sections are presented as a function of rapidity and transverse momentum, as is the nuclear modification factor, $R_{p\mathrm{Pb}}$ for $J/\psi$ and $\mit{\Upsilon}(\mathrm{1S})$. No significant modification of the $J/\psi$ production is observed while $\mit{\Upsilon}(\mathrm{1S})$ production is found to be suppressed at low transverse momentum in $p$+Pb collisions relative to $pp$ collisions. The production of excited charmonium and bottomonium states is found to be suppressed relative to that of the ground states in central $p$+Pb collisions.

0 data tables match query

Measurement of the centrality dependence of the charged-particle pseudorapidity distribution in proton--lead collisions at $\sqrt{s_{_{\rm{NN}}}} = 5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Eur.Phys.J.C 76 (2016) 199, 2016.
Inspire Record 1386475 DOI 10.17182/hepdata.69240

The centrality dependence of the mean charged-particle multiplicity as a function of pseudorapidity is measured in approximately 1 $\mu$b$^{-1}$ of proton--lead collisions at a nucleon--nucleon centre-of-mass energy of $\sqrt{s_{_{\rm{NN}}}} = 5.02$ TeV using the ATLAS detector at the Large Hadron Collider. Charged particles with absolute pseudorapidity less than 2.7 are reconstructed using the ATLAS pixel detector. The $p$+Pb collision centrality is characterised by the total transverse energy measured in the Pb-going direction of the forward calorimeter. The charged-particle pseudorapidity distributions are found to vary strongly with centrality, with an increasing asymmetry between the proton-going and Pb-going directions as the collisions become more central. Three different estimations of the number of nucleons participating in the $p$+Pb collision have been carried out using the Glauber model as well as two Glauber--Gribov inspired extensions to the Glauber model. Charged-particle multiplicities per participant pair are found to vary differently for these three models, highlighting the importance of including colour fluctuations in nucleon--nucleon collisions in the modelling of the initial state of $p$+Pb collisions.

0 data tables match query

Search for squarks and gluinos in final states with jets and missing transverse momentum at $\sqrt{s}=$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 76 (2016) 392, 2016.
Inspire Record 1458270 DOI 10.17182/hepdata.74253

A search for squarks and gluinos in final states containing hadronic jets, missing transverse momentum but no electrons or muons is presented. The data were recorded in 2015 by the ATLAS experiment in $\sqrt{s}=$ 13 TeV proton--proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 3.2 fb$^{-1}$ of analyzed data. Results are interpreted within simplified models that assume R-parity is conserved and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1.51 TeV for a simplified model incorporating only a gluino octet and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.03 TeV are excluded for a massless lightest neutralino. These limits substantially extend the region of supersymmetric parameter space excluded by previous measurements with the ATLAS detector.

0 data tables match query