A search for exotic decays of the 125 GeV Higgs boson into a pair of new spin-0 particles, $H \to aa$, where one decays into a photon pair and the other into a $\tau$-lepton pair, is presented. Hadronic decays of the $\tau$-leptons are considered and reconstructed using a dedicated tagger for collimated $\tau$-lepton pairs. The search uses 140 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV recorded between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider. The search is performed in the mass range of the $a$ boson between 10 GeV and 60 GeV. No significant excess of events is observed above the Standard Model background expectation. Model-independent upper limits at 95$\% $ confidence level are set on the branching ratio of the Higgs boson to the $\gamma\gamma\tau\tau$ final state, $\mathcal{B}(H\to aa\to \gamma\gamma\tau\tau)$, ranging from 0.2$\% $ to 2$\% $, depending on the $a$-boson mass hypothesis.
Distribution of the diphoton invariant mass for all events satisfying the analysis selections in the full Run 2 dataset.
Scan of the observed $p$-value as a function of $m_{a}$ for the background-only hypothesis.
The observed and expected ($\pm1\sigma$) upper limits at 95% CL on the branching ratio for $H\rightarrow aa\rightarrow \gamma\gamma\tau\tau$ as a function of the resonance mass hypothesis $m_{a}$.
Measurements of the differential production cross-sections of prompt and non-prompt $J/\psi$ and $\psi(2$S$)$ mesons with transverse momenta between 8 and 360 GeV and rapidity in the range $|y|<2$ are reported. Furthermore, measurements of the non-prompt fractions of $J/\psi$ and $\psi(2$S$)$, and the prompt and non-prompt $\psi(2$S$)$-to-$J/\psi$ production ratios, are presented. The analysis is performed using 140 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data recorded by the ATLAS detector at the LHC during the years 2015-2018.
Summary of results for cross-section of prompt $J/\psi$ decaying to a muon pair for 13 TeV data in fb/GeV. Uncertainties are statistical and systematic, respectively.
Summary of results for cross-section of non-prompt $J/\psi$ decaying to a muon pair for 13 TeV data in fb/GeV. Uncertainties are statistical and systematic, respectively.
Summary of results for cross-section of prompt $\psi(2S)$ decaying to a muon pair for 13 TeV data in fb/GeV. Uncertainties are statistical and systematic, respectively.
A combination of searches for the single production of vector-like top quarks ($T$) is presented. These analyses are based on proton$-$proton collisions at $\sqrt{s}=13$ TeV recorded in 2015$-$2018 with the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$^{-1}$. The $T$-quark decay modes considered in this combination are into a top quark and either a Standard Model Higgs boson or a $Z$ boson ($T \to Ht$ and $T \to Zt$). The individual searches used in the combination are differentiated by the number of leptons ($e$, $\mu$) in the final state. The observed data are found to be in good agreement with the Standard Model background prediction. Interpretations are provided for a range of masses and couplings of the vector-like top quark for benchmark models and generalized representations in terms of 95% confidence level limits. For a benchmark signal prediction of a vector-like top quark SU2 singlet with electroweak coupling, $\kappa$, of 0.5, masses below 2.1 TeV are excluded, resulting in the most restrictive limits to date.
Observed and expected 95% CL upper limits on the total cross-section σ($pp$ → $T$ → $Ht/Zt$) as a function of $T$-quark mass in the SU(2) singlet representation assuming $\kappa$=0.3. The expected limits for the individual analyses are shown. The $HtZt$ analysis is only included in the limit calculation for $m_{\mathrm{T}}$ < 2.1 TeV.
Observed and expected 95% CL upper limits on the total cross-section σ($pp$ → $T$ → $Ht/Zt$) as a function of $T$-quark mass in the SU(2) singlet representation assuming $\kappa$=0.5. The expected limits for the individual analyses are shown. The $HtZt$ analysis is only included in the limit calculation for $m_{\mathrm{T}}$ < 2.1 TeV.
Observed and expected 95% CL upper limits on the total cross-section σ($pp$ → $T$ → $Ht/Zt$) as a function of $T$-quark mass in the SU(2) doublet representation assuming $\kappa$=0.3. The expected limits for the individual analyses are shown. The $HtZt$ analysis is only included in the limit calculation for $m_{\mathrm{T}}$ < 2.1 TeV.
A search is conducted for a new scalar boson $S$, with a mass distinct from that of the Higgs boson, decaying into four leptons ($\ell =$$e$, $\mu$) via an intermediate state containing two on-shell, promptly decaying new spin-1 bosons $Z_\text{d}$: $S \rightarrow Z_\text{d}Z_\text{d} \rightarrow 4\ell$, where the $Z_\text{d}$ boson has a mass between 15 and 300 GeV, and the $S$ boson has a mass between either 30 and 115 GeV or 130 and 800 GeV. The search uses proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider with an integrated luminosity of 139 fb$^{-1}$ at a centre-of-mass energy of $\sqrt{s}=13$ TeV. No significant excess above the Standard Model background expectation is observed. Upper limits at 95% confidence level are set on the production cross-section times branching ratio, $\sigma(gg \to S) \times \mathcal{B}(S\rightarrow Z_\text{d}Z_\text{d} \rightarrow 4\ell)$, as a function of the mass of both particles, $m_S$ and $m_{Z\text{d}}$.
Average dilepton mass distribution $\left\langle m_{\ell\ell}\right\rangle = \frac{1}{2}\left(m_{ab} + m_{cd}\right)$ in Signal Region 1.
Average dilepton mass distribution $\left\langle m_{\ell\ell}\right\rangle = \frac{1}{2}\left(m_{ab} + m_{cd}\right)$ in Signal Region 2.
Total invariant mass distribution $m_{4\ell}$ in Signal Region 1.
A measurement of off-shell Higgs boson production in the $H^*\to ZZ\to 4\ell$ decay channel is presented. The measurement uses 140 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected by the ATLAS detector at the Large Hadron Collider and supersedes the previous result in this decay channel using the same dataset. The data analysis is performed using a neural simulation-based inference method, which builds per-event likelihood ratios using neural networks. The observed (expected) off-shell Higgs boson production signal strength in the $ZZ\to 4\ell$ decay channel at 68% CL is $0.87^{+0.75}_{-0.54}$ ($1.00^{+1.04}_{-0.95}$). The evidence for off-shell Higgs boson production using the $ZZ\to 4\ell$ decay channel has an observed (expected) significance of $2.5\sigma$ ($1.3\sigma$). The expected result represents a significant improvement relative to that of the previous analysis of the same dataset, which obtained an expected significance of $0.5\sigma$. When combined with the most recent ATLAS measurement in the $ZZ\to 2\ell 2\nu$ decay channel, the evidence for off-shell Higgs boson production has an observed (expected) significance of $3.7\sigma$ ($2.4\sigma$). The off-shell measurements are combined with the measurement of on-shell Higgs boson production to obtain constraints on the Higgs boson total width. The observed (expected) value of the Higgs boson width at 68% CL is $4.3^{+2.7}_{-1.9}$ ($4.1^{+3.5}_{-3.4}$) MeV.
Values of the test statistic $t_{\mu_{\mathrm{off-shell}}}$ assuming a single parameter of interest $\mu_{\mathrm{off-shell}}$ obtained with an Asimov dataset and with data in the $H^*\rightarrow ZZ\rightarrow 4\ell$ decay channel. The values from the histogram-based analysis (Phys. Lett. B 846 (2023) 138223) are added for comparison. The 68% and 95% confidence intervals obtained from the Neyman construction are also added.
Values of the test statistic $t_{\mu_{\mathrm{off-shell}}}$ assuming a single parameter of interest $\mu_{\mathrm{off-shell}}$ obtained with an Asimov dataset and with data in the $H^*\rightarrow ZZ\rightarrow 4\ell$ decay channel. The values with all nuisance parameters fixed at their best-fit values (stat-only) are added for comparison. The 68% and 95% confidence intervals obtained from the Neyman construction are also added.
Values of the test statistic $t_{\mu_{\mathrm{off-shell}}}$ assuming a single parameter of interest $\mu_{\mathrm{off-shell}}$ obtained with an Asimov dataset and with data when combining the $H^*\rightarrow ZZ\rightarrow 4\ell$ and $H^*\rightarrow ZZ\rightarrow 2\ell 2\nu$ decay channels. The values with all nuisance parameters fixed at their best-fit values (stat-only) are added for comparison. The 68% and 95% confidence intervals obtained from the Neyman construction are also added.
A search is reported for long-lived dark photons with masses between 0.1 GeV and 15 GeV, from exotic decays of Higgs bosons produced via vector-boson-fusion. Events that contain displaced collimated Standard Model fermions reconstructed in the calorimeter or muon spectrometer are probed. This search uses the full LHC Run 2 (2015-2018) data sample collected in proton-proton collisions at $\sqrt{s}=13$ TeV, corresponding to an integrated luminosity of 139 $fb^{-1}$. Dominant backgrounds from Standard Model processes and non-collision sources are estimated by using data-driven techniques. The observed event yields in the signal regions are consistent with the expected background. Upper limits on the Higgs boson to dark photon branching fraction are reported as a function of the dark-photon mean proper decay length or of the dark-photon mass and the coupling between the Standard Model and the potential dark sector. This search is combined with previous ATLAS searches obtained in the gluon-gluon fusion and \textit{WH} production modes. A branching fraction above 10% is excluded at 95% CL for a 125 GeV Higgs boson decaying into two dark photons for dark-photon mean proper decay lengths between 173 and 1296 mm and mass of 10 GeV.
Observed 95% CL upper limits on B(H→ 2γ<sub>d</sub>+X) for different γ<sub>d</sub> masses and a 125 GeV Higgs boson, as a function of the dark-photon mean proper decay length cτ. The limits are shown for the SR<sub>μ</sub> search channel, assuming an FRVZ signal model. The hatched band denotes the region in which the branching ratio is larger than unity.
Observed 95% CL upper limits on B(H→ 2γ<sub>d</sub>+X) for different γ<sub>d</sub> masses and a 125 GeV Higgs boson, as a function of the dark-photon mean proper decay length cτ. The limits are shown for the SR<sub>c</sub><sup>L</sup> search channel, assuming an FRVZ signal model. The hatched band denotes the region in which the branching ratio is larger than unity.
Observed 95% CL upper limits on B(H→ 2γ<sub>d</sub>+X) for different γ<sub>d</sub> masses and a 125 GeV Higgs boson, as a function of the dark-photon mean proper decay length cτ. The limits are shown for the SR<sub>c</sub><sup>H</sup> search channel, assuming an FRVZ signal model. The hatched band denotes the region in which the branching ratio is larger than unity.
This paper presents the measurement of fiducial and differential cross sections for both the inclusive and electroweak production of a same-sign $W$-boson pair in association with two jets ($W^\pm W^\pm jj$) using 139 fb$^{-1}$ of proton-proton collision data recorded at a centre-of-mass energy of $\sqrt{s}=13$ TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity difference. The measured fiducial cross sections for electroweak and inclusive $W^\pm W^\pm jj$ production are $2.92 \pm 0.22\, \text{(stat.)} \pm 0.19\, \text{(syst.)}$ fb and $3.38 \pm 0.22\, \text{(stat.)} \pm 0.19\, \text{(syst.)}$ fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confidence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons $H^{\pm\pm}$ that are produced in vector-boson fusion processes and decay into a same-sign $W$ boson pair is performed. The largest deviation from the Standard Model occurs for an $H^{\pm\pm}$ mass near 450 GeV, with a global significance of 2.5 standard deviations.
Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\ell\ell}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 11.
Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\mathrm{T}}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 12.
Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\mathrm{jj}}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 13.
A search for non-resonant Higgs boson pair ($HH$) production is presented, in which one of the Higgs bosons decays to a b-quark pair ($b\bar b$) and the other decays to $WW^*$, $ZZ^*$, or $\tau^+\tau^-$, with in each case a final state with $\ell^+\ell^- +$ neutrinos ($\ell = e, \mu$). The analysis targets separately the gluon-gluon fusion and vector boson fusion production modes. Data recorded by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of $140\mathrm{fb}^{-1}$, are used in this analysis. Events are selected to have exactly two $b$-tagged jets and two leptons with opposite electric charge and missing transverse momentum in the final state. These events are classified using multivariate analysis algorithms to separate the $HH$ events from other Standard Model processes. No evidence of the signal is found. The observed (expected) upper limit on the cross-section for non-resonant Higgs boson pair production is determined to be 9.7 (16.2) times the Standard Model prediction at 95% confidence level. The Higgs boson self-interaction coupling parameter $\kappa_\lambda$ and the quadrilinear coupling parameter $\kappa_{2V}$ are each separately constrained by this analysis to be within the ranges ${[-6.2, 13.3]}$ and ${[-0.17, 2.4]}$, respectively, at 95% confidence level, when all other parameters are fixed.
Pre-fit yields of the $t\bar{t}$, $Z$+HF and $Wt$ CRs, both for the ggF and VBF event selection, as well as the highest-score bins, numbered from high (VBF-SR 1 and ggF-SR 1) to low score (VBF-SR 5 and ggF-SR 7), of the BDT and DNN output distribution in the VBF and ggF event categories, respectively, as used in the final result. The shaded bands include both statistical and systematic uncertainties.
Post-fit yields from the signal+background fit of the $t\bar{t}$, $Z$+HF and $Wt$ CRs, both for the ggF and VBF event selections, as well as the highest-score bins, numbered from high (VBF-SR 1 and ggF-SR 1) to low score (VBF-SR 5 and ggF-SR 7), of the BDT and DNN output distribution in the VBF and ggF event categories respectively as used in the final result. The fit is a conditional fit with the signal strength fixed to the observed upper limit of $\mu_{HH} = 9.7$. The shaded bands include both statistical and systematic uncertainties.
Observed and expected upper limits on the ratios of the Higgs boson pair production cross-section to the corresponding Standard Model prediction $\sigma_{HH}/\sigma^\mathrm{SM}_{HH}$ for the ggF $HH$ signal only (top row), the VBF $HH$ signal only while considering ggF $HH$ as background (second row) and the combined ggF+VBF $HH$ signal considering only the ggF SR (third row) and considering all SRs (bottom row) at a 95% confidence level. The relative ratio between the ggF and VBF production modes is fixed to the SM value.
A search for charged-lepton-flavour violating $\mu\tau qt$ ($q=u,c$) interactions is presented, considering both top-quark production and decay. The data analysed correspond to 140 $\textrm{fb}^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}= $13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The analysis targets events containing two muons with the same electric charge, a hadronically decaying $\tau$-lepton and at least one jet, with exactly one $b$-tagged jet, produced by a $\mu\tau qt$ interaction. Agreement with the Standard Model expectation within $1.6\sigma$ is observed, and limits are set at the 95% CL on the charged-lepton-flavour violation branching ratio of $\mathcal{B}(t \to \mu\tau q) < 8.7 \times 10^{-7}$. An Effective Field Theory interpretation is performed yielding 95% CL limits on Wilson coefficients, dependent on the flavour of the associated light quark and the Lorentz structure of the coupling. These range from $|c_{\mathsf{lequ}}^{3(2313)}| / \Lambda^{2} < 0.10\textrm{ TeV}^{-2}$ for $\mu\tau ut$ to $|c_{\mathsf{ lequ}}^{1(2323)}| / \Lambda^{2} < 1.8\textrm{ TeV}^{-2}$ for $\mu\tau ct$. An additional interpretation is performed for scalar leptoquark production inducing charged lepton flavour violation, with fixed inter-generational couplings. Upper limits on leptoquark coupling strengths are set at the 95% CL, ranging from $\lambda^{\textrm{LQ}} = $1.3 to $\lambda^{\textrm{LQ}} = $3.7 for leptoquark masses between 0.5 and 2.0 TeV.
Observed event yields in $\textrm{CR}t\bar{t}\mu$ compared with pre-fit expectations from Monte Carlo simulations, as a function of the scalar sum of lepton and jet transverse momenta, $H_{\mathrm{T}}$. The last bin includes overflow events. `Signal (prod.)' and `Signal (dec.)' refer to the single-top-quark production and top-quark pair decay signal contributions, respectively. The pre-fit signal yield represents all Wilson coefficients set to 0.1 simultaneously for a new physics scale of $\Lambda=1$ TeV.
Observed event yields in $\textrm{CR}t\bar{t}\mu$ compared with post-fit expectations from Monte Carlo simulations, as a function of the scalar sum of lepton and jet transverse momenta, $H_{\mathrm{T}}$. The last bin includes overflow events. `Signal (prod.)' and `Signal (dec.)' refer to the single-top-quark production and top-quark pair decay signal contributions, respectively.
Observed event yields in $\textrm{SR}$ compared with pre-fit expectations from Monte Carlo simulations, as a function of the scalar sum of lepton and jet transverse momenta, $H_{\mathrm{T}}$. The last bin includes overflow events. `Signal (prod.)' and `Signal (dec.)' refer to the single-top-quark production and top-quark pair decay signal contributions, respectively. The pre-fit signal yield represents all Wilson coefficients set to 0.1 simultaneously for a new physics scale of $\Lambda=1$ TeV.
A search is performed for localized excesses in the low-mass dijet invariant mass distribution, targeting a hypothetical new particle decaying into two jets and produced in association with either a high transverse momentum photon or a jet. The search uses the full Run 2 data sample from LHC proton-proton collisions collected by the ATLAS experiment at a center-of-mass energy of 13 TeV during 2015-2018. Two variants of the search are presented for each type of initial-state radiation: one that makes no jet flavor requirements and one that requires both of the jets to have been identified as containing $b$-hadrons. No excess is observed relative to the Standard Model prediction, and the data are used to set upper limits on the production cross-section for a benchmark $Z'$ model and, separately, for generic, beyond the Standard Model scenarios which might produce a Gaussian-shaped contribution to dijet invariant mass distributions. The results extend the current constraints on dijet resonances to the mass range between 200 and 650 GeV.
Dijet invariant mass distributions data compared to the fitted background estimates for the $\gamma j j$ channel. The distributions are shown here with the $m_{jj}$ resolution binning.
Dijet invariant mass distributions data compared to the fitted background estimates for the $\gamma b b$ channel. The distributions are shown here with the $m_{jj}$ resolution binning.
Dijet invariant mass distributions data compared to the fitted background estimates for the $j j j$ channel. The distributions are shown here with the $m_{jj}$ resolution binning.