Antideuteron production in $\Upsilon(nS)$ decays and in $e^+e^- \to q\overline{q}$ at $\sqrt{s} \approx 10.58 \mathrm{\,Ge\kern -0.1em V}$

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 89 (2014) 111102, 2014.
Inspire Record 1286317 DOI 10.17182/hepdata.64605

We present measurements of the inclusive production of antideuterons in $e^+e^-$ annihilation into hadrons at $\approx 10.58 \mathrm{\,Ge\kern -0.1em V}$ center-of-mass energy and in $\Upsilon(1S,2S,3S)$ decays. The results are obtained using data collected by the BABAR detector at the PEP-II electron-positron collider. Assuming a fireball spectral shape for the emitted antideuteron momentum, we find $\mathcal{B}(\Upsilon(1S) \to \bar{d}X) = (2.81 \pm 0.49 \mathrm{(stat)} {}^{+0.20}_{-0.24} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(2S) \to \bar{d}X) = (2.64 \pm 0.11 \mathrm{(stat)} {}^{+0.26}_{-0.21} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(3S) \to \bar{d}X) = (2.33 \pm 0.15 \mathrm{(stat)} {}^{+0.31}_{-0.28} \mathrm{(syst)})/! \times /! 10^{-5}$, and $\sigma (e^+e^- \to \bar{d}X) = (9.63 \pm 0.41 \mathrm{(stat)} {}^{+1.17}_{-1.01} \mathrm{(syst)}) \mbox{\,fb}$.

5 data tables

The rate of antideuteron production from the decay of UPSILON(3S).

The rate of antideuteron production from the decay of UPSILON(2S).

The rate of antideuteron production from the decay of UPSILON(1S).

More…

Measurement and interpretation of fermion-pair production at LEP energies above the Z resonance.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 45 (2006) 589-632, 2006.
Inspire Record 699726 DOI 10.17182/hepdata.48590

This paper presents DELPHI measurements and interpretations of cross-sections, forward-backward asymmetries, and angular distributions, for the e+e- -> ffbar process for centre-of-mass energies above the Z resonance, from sqrt(s) ~ 130 - 207 GeV at the LEP collider. The measurements are consistent with the predictions of the Standard Model and are used to study a variety of models including the S-Matrix ansatz for e+e- -> ffbar scattering and several models which include physics beyond the Standard Model: the exchange of Z' bosons, contact interactions between fermions, the exchange of gravitons in large extra dimensions and the exchange of sneutrino in R-parity violating supersymmetry.

29 data tables

Measured cross sections and forward-backward asymmetries for non-radiative E+ E- --> E+ E- events.

Differential cross sections for non-radiative E+ E- --> E+ E- events at centre of mass energy 189 GeV.

Differential cross sections for non-radiative E+ E- --> E+ E- events at centre of mass energy 192 GeV.

More…

A study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 29 (2003) 285-312, 2003.
Inspire Record 620250 DOI 10.17182/hepdata.13029

Infrared and collinear safe event shape distributions and their mean values are determined in e+e- collisions at centre-of-mass energies between 45 and 202 GeV. A phenomenological analysis based on power correction models including hadron mass effects for both differential distributions and mean values is presented. Using power corrections, alpha_s is extracted from the mean values and shapes. In an alternative approach, renormalisation group invariance (RGI) is used as an explicit constraint, leading to a consistent description of mean values without the need for sizeable power corrections. The QCD beta-function is precisely measured using this approach. From the DELPHI data on Thrust, including data from low energy experiments, one finds beta_0 = 7.86 +/- 0.32 for the one loop coefficient of the beta-function or, assuming QCD, n_f = 4.75 +/- 0.44 for the number of active flavours. These values agree well with the QCD expectation of beta_0=7.67 and n_f=5. A direct measurement of the full logarithmic energy slope excludes light gluinos with a mass below 5 GeV.

71 data tables

1-THRUST distribution.

THRUST-MAJOR distribution.

THRUST-MINOR distribution.

More…

Precise determination of the Z resonance parameters at LEP: 'Zedometry'.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 19 (2001) 587-651, 2001.
Inspire Record 538108 DOI 10.17182/hepdata.49855

This final analysis of hadronic and leptonic cross-sections and of leptonic forward-backward asymmetries in e+e- collisions with the OPAL detector makes use of the full LEP1 data sample comprising 161 pb^-1 of integrated luminosity and 4.5 x 10^6 selected Z decays. An interpretation of the data in terms of contributions from pure Z exchange and from Z-gamma interference allows the parameters of the Z resonance to be determined in a model-independent way. Our results are in good agreement with lepton universality and consistent with the vector and axial-vector couplings predicted in the Standard Model. A fit to the complete dataset yields the fundamental Z resonance parameters: mZ = 91.1852 +- 0.0030 GeV, GZ = 2.4948 +- 0.0041 GeV, s0h = 41.501 +- 0.055 nb, Rl = 20.823 +- 0.044, and Afb0l = 0.0145 +- 0.0017. Transforming these parameters gives a measurement of the ratio between the decay width into invisible particles and the width to a single species of charged lepton, Ginv/Gl = 5.942 +- 0.027. Attributing the entire invisible width to neutrino decays and assuming the Standard Model couplings for neutrinos, this translates into a measurement of the effective number of light neutrino species, N_nu = 2.984 +- 0.013. Interpreting the data within the context of the Standard Model allows the mass of the top quark, mt = 162 +29-16 GeV, to be determined through its influence on radiative corrections. Alternatively, utilising the direct external measurement of mt as an additional constraint leads to a measurement of the strong coupling constant and the mass of the Higgs boson: alfa_s(mZ) = 0.127 +- 0.005 and mH = 390 +750-280 GeV.

7 data tables

The cross section for hadron production corrected to the simple kinematic acceptance region defined by SPRIME/S > 0.01. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross section at the central value of SQRT(S).

The cross section for E+ E- production corrected to the simple kinematic acceptance region defined by ABS(COS(THETA(C=E-))) < 0.7 and THETA(C=ACOL) < 10 degrees. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross sectionat the central value of SQRT(S).

The cross section for mu+ mu- production corrected to the simple kinematic acceptance region defined by N = M(P=3_4)**2/S > 0.01. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross section at the central value of SQRT(S).

More…

QCD studies with e+ e- annihilation data at 172-GeV to 189-GeV.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 16 (2000) 185-210, 2000.
Inspire Record 513476 DOI 10.17182/hepdata.49000

We have studied hadronic events from e+e- annihilation data at centre-of-mass energies of sqrt{s}=172, 183 and 189 GeV. The total integrated luminosity of the three samples, measured with the OPAL detector, corresponds to 250 pb^-1. We present distributions of event shape variables, charged particle multiplicity and momentum, measured separately in the three data samples. From these we extract measurements of the strong coupling alpha_s, the mean charged particle multiplicity <nch> and the peak position xi_0 in the xi_p=ln(1/x_p) distribution. In general the data are described well by analytic QCD calculations and Monte Carlo models. Our measured values of alpha_s, <nch> and xi_0 are consistent with previous determinations at sqrt{s}=MZ.

20 data tables

Distribution of Thrust.

Distribution of Thrust Major.

Distribution of Thrust Minor.

More…

Tests of the standard model and constraints on new physics from measurements of fermion pair production at 189-GeV at LEP

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 13 (2000) 553-572, 2000.
Inspire Record 504989 DOI 10.17182/hepdata.49123

Cross-sections and angular distributions for hadronic and lepton pair final states in e+e- collisions at a centre-of-mass energy near 189 GeV, measured with the OPAL detector at LEP, are presented and compared with the predictions of the Standard Model. The results are used to measure the energy dependence of the electromagnetic coupling constant alpha_em, and to place limits on new physics as described by four-fermion contact interactions or by the exchange of a new heavy particle such as a sneutrino in supersymmetric theories with R-parity violation. A search for the indirect effects of the gravitational interaction in extra dimensions on the mu+mu- and tau+tau- final states is also presented.

9 data tables

Hadronic cross section.

The cross sections for hadronic, and muon- and tau-pair production in the two sprime/s regions.

The cross sections for electron -pair production with various angular cuts.

More…

A study of parton fragmentation in hadronic Z0 decays using Lambda Antilambda correlations.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 13 (2000) 185-195, 2000.
Inspire Record 474010 DOI 10.17182/hepdata.49312

The correlated production of Lambda and Lambdabar baryons has been studied using 4.3 million multihadronic Zo decays recorded with the OPAL detector at LEP. Di-lambda pairs were investigated in the full data sample and for the first time also in 2-jet and 3-jet events selected with the k_t algorithm. The distributions of rapidity differences from correlated Lambda-Lambdabar pairs exhibit short-range, local correlations and prove to be a sensitive tool to test models, particularly for 2-jet events. The JETSET model describes the data best but some extra parameter tuning is needed to improve agreement with the experimental results in the rates and the rapidity spectra simultaneously. The recently developed modification of JETSET, the MOdified Popcorn Scenarium (MOPS), and also HERWIG do not give satisfactory results. This study of di-lambda production in 2- and 3-jet events supports the short-range compensation of quantum numbers.

5 data tables

Average multipicity of LAMBDA pairs in hadronic events.

Average multipicity of LAMBDA pairs in 2-Jet events.

Average multipicity of LAMBDA pairs in 3-Jet events.

More…

Measurement of the longitudinal cross-section using the direction of the thrust axis in hadronic events at LEP.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Phys.Lett.B 440 (1998) 393-402, 1998.
Inspire Record 474666 DOI 10.17182/hepdata.49354

In the process e+e- to hadrons, one of the effects of gluon emission is to modify the 1+cos(theta)**2 form of the angular distribution of the thrust axis, an effect which may be quantified by the longitudinal cross-section. Using the OPAL detector at LEP, we have determined the longitudinal to total cross-section ratio to be 0.0127+-0.0016+-0.0013 at the parton level, in good agreement with the expectation of QCD computed to Order(alpha_s**2) Comparisions at the hadron level with Monte Carlo models are presented. The dependence of the longitudinal cross-section on the value of thrust has also been studied, and provides a new test of QCD.

2 data tables

Values of SIG(C=L) integrated over all Thrust.

Measured values of the differential cross section, and the corresponding ratio of longitudinal to total cross sections, corrected to the hadron level.


Measurement of the fraction of hadronic Z decays into charm quark pairs.

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Eur.Phys.J.C 4 (1998) 557-570, 1998.
Inspire Record 468852 DOI 10.17182/hepdata.49530

The full statistics of hadronic Z decays collected with the ALEPH detector are analysed to measure, by three methods, the ratio, ${\rm R_c}$ , of the partial decay

1 data table

No description provided.


Measurement of the total cross section for e+ e- --> hadrons at s**(1/2) = 10.52-GeV.

The CLEO collaboration Ammar, R. ; Baringer, Philip S. ; Bean, A. ; et al.
Phys.Rev.D 57 (1998) 1350-1358, 1998.
Inspire Record 445351 DOI 10.17182/hepdata.47132

Using the CLEO detector at the Cornell Electron Storage Ring, we have made a measurement of R=sigma(e+e- ->hadrons)/sigma(e+e- ->mu+mu-) =3.56+/-0.01+/-0.07 at ECM=10.52 GeV. This implies a value for the strong coupling constant of alpha_s(10.52 GeV)=0.20+/-0.01+/-0.06, or alpha_s(M_Z)=0.13+/-0.005+/-0.03.

2 data tables

Corrected for background and radiactive effects.

Value of ALPHAS, the strong coupling constant, from the measurement of R. CT,= ALPHAS also given evolved to the Z0 mass.