The production of the $\rho$(770)${^{0}}$ meson has been measured at mid-rapidity $(|y|<0.5)$ in pp and centrality differential Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV with the ALICE detector at the Large Hadron Collider. The particles have been reconstructed in the $\rho$(770)$\rightarrow\pi^{+}\pi^{-}$ decay channel in the transverse momentum ($p_{T}$) range $0.5-11$ GeV/$c$. A centrality dependent suppression of the ratio of the integrated yields $2\rho$(770)$^{0}/(\pi^{+}+\pi^{-})$ is observed. The ratio decreases by $\sim40\%$ from pp to central Pb-Pb collisions. A study of the $p_{T}$-differential $2\rho$(770)$^{0}/(\pi^{+}+\pi^{-})$ ratio reveals that the suppression occurs at low transverse momenta, $p_{T}<2$ GeV/$c$. At higher momentum, particle ratios measured in heavy-ion and pp collisions are consistent. The observed suppression is very similar to that previously measured for the $K^{*}$(892)$^{0}/K$ ratio and is consistent with EPOS3 predictions that may imply that rescattering in the hadronic phase is a dominant mechanism for the observed suppression.
Reconstructed mass of $\rho^{0}$ meson in pp collisions at $\sqrt{s}=2.76~{\rm TeV}$.
Reconstructed mass of $\rho^{0}$ meson in 0-20$\%$ central Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76~{\rm TeV}$.
Reconstructed mass of $\rho^{0}$ meson in 20-40$\%$ central Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76~{\rm TeV}$.
The mass of the top quark is measured using a sample of $\mathrm{t\overline{t}}$ events collected by the CMS detector using proton-proton collisions at $\sqrt{s} =$ 13 TeV at the CERN LHC. Events are selected with one isolated muon or electron and at least four jets from data corresponding to an integrated luminosity of 35.9 fb$^{-1}$. For each event the mass is reconstructed from a kinematic fit of the decay products to a $\mathrm{t\overline{t}}$ hypothesis. Using the ideogram method, the top quark mass is determined simultaneously with an overall jet energy scale factor (JSF), constrained by the mass of the W boson in $\mathrm{q\overline{q}'}$ decays. The measurement is calibrated on samples simulated at next-to-leading order matched to a leading-order parton shower. The top quark mass is found to be 172.25 $\pm$ 0.08 (stat+JSF) $\pm$ 0.62 (syst) GeV. The dependence of this result on the kinematic properties of the event is studied and compared to predictions of different models of $\mathrm{t\overline{t}}$ production, and no indications of a bias in the measurements are observed.
Measured top quark mass $m_{t}$