A search for Higgs boson pair production in the $b \overline{b} γγ$ final state is performed. The proton-proton collision dataset in this analysis corresponds to an integrated luminosity of 308 fb$^{-1}$, consisting of two samples, 140 fb$^{-1}$ at a centre-of-mass energy of 13 TeV and 168 fb$^{-1}$ at 13.6 TeV, recorded between 2015 and 2024 by the ATLAS detector at the CERN Large Hadron Collider. In addition to a larger dataset, this analysis improves upon the previous search in the same final state through several methodological and technical developments. The Higgs boson pair production cross section divided by the Standard Model prediction is found to be $μ_{HH} = 0.9^{+1.4}_{-1.1}$ ($μ_{HH} = 1^{+1.3}_{-1.0}$ expected), which translates into a 95% confidence-level upper limit of $μ_{HH}<3.8$. At the same confidence level the Higgs self-coupling modifier is constrained to be in the range $-1.7 < κ_λ< 6.6$ ($-1.8 < κ_λ< 6.9$ expected).
Weighted di-photon invariant mass distribution summed over all categories and the two data-taking periods. The events in each category are weighted by $log(1+S_{SM}/B)$. $S_{SM}$ is the expected signal yield assuming $\mu_{HH}$=1, while B is the continuum background yield obtained from a fit to the sidebands plus the single Higgs boson background obtained from simulation, all in a ± 5 GeV window around the Higgs boson mass. The lines show the fit results for the continuum background only (light dotted), adding single Higgs boson backgrounds (black dotted) and the full fit (solid).
Weighted di-photon invariant mass distribution summed over all categories and the two data-taking periods. The events in each category are weighted by $log(1+S_{SM}/B)$. $S_{SM}$ is the expected signal yield assuming $\mu_{HH}$=1, while B is the continuum background yield obtained from a fit to the sidebands plus the single Higgs boson background obtained from simulation, all in a ± 5 GeV window around the Higgs boson mass. The lines show the fit results for the continuum background only (light dotted), adding single Higgs boson backgrounds (black dotted) and the full fit (solid).
The 95% CL upper limits on the signal strength, obtained with separate fits to Run-2 and Run-3 data as well as their combination. When computing the significance or upper limit for one data-taking period only, $\mu_{HH}$ of the other period is left free to vary. All other parameters of interest are fixed to their SM expectation.
A search for decays of the Higgs boson into a $Z$ boson and a light resonance, with a mass of 0.5-3.5 GeV, is performed using the full 140 fb$^{-1}$ dataset of 13 TeV proton-proton collisions recorded by the ATLAS detector during Run 2 of the LHC. Leptonic decays of the $Z$ boson and hadronic decays of the light resonance are considered. The resonance can be interpreted as a $J/ψ$ or $η_c$ meson, an axion-like particle, or a light pseudoscalar in two-Higgs-doublet models. Due to its low mass, it would be produced with high boost and reconstructed as a single small-radius jet of hadrons. A neural network is used to correct the Monte Carlo simulation of the background in a data-driven way. Two additional neural networks are used to distinguish signal from background. A binned profile-likelihood fit is performed on the final-state invariant mass distribution. No significant excess of events relative to the expected background is observed, and upper limits at 95% confidence level are set on the Higgs boson's branching fraction to a $Z$ boson and a light resonance. The exclusion limit is ~10% for the lower masses, and increases for higher masses. Upper limits on the effective coupling $C^\text{eff}_{ZH}/Λ$ of an axion-like particle to a Higgs boson and $Z$ boson are also set at 95% confidence level, and range from 0.9 to 2 TeV$^{-1}$.
The angularity, for data, background (pre- and post-reweighting) and three $H\rightarrow Za$ signal hypotheses (for $a\rightarrow q\bar{q}/gg$ inclusively). Events are required to pass the complete event selection but not the classification NN requirement. The background normalization is set equal to that of the data for events passing the preselection and being in the $m_{\ell\ell j}$ 100-180 GeV region. The signal normalization assumes the SM Higgs boson inclusive production cross-section, $\mathcal{B}(H\to Za)=100\%$, and it is scaled up by a factor of 100. The error bars (hatched regions) represent the data (MC) sample's statistical uncertainty in the histograms and the ratio plots. Vertical arrows indicate data points that fall outside the displayed $y$-axis range.
The angularity, for data, background (pre- and post-reweighting) and three $H\rightarrow Za$ signal hypotheses (for $a\rightarrow q\bar{q}/gg$ inclusively). Events are required to pass the complete event selection but not the classification NN requirement. The background normalization is set equal to that of the data for events passing the preselection and being in the $m_{\ell\ell j}$ 100-180 GeV region. The signal normalization assumes the SM Higgs boson inclusive production cross-section, $\mathcal{B}(H\to Za)=100\%$, and it is scaled up by a factor of 100. The error bars (hatched regions) represent the data (MC) sample's statistical uncertainty in the histograms and the ratio plots. Vertical arrows indicate data points that fall outside the displayed $y$-axis range.
The modified energy correlation function, for data, background (pre- and post-reweighting) and three $H\rightarrow Za$ signal hypotheses (for $a\rightarrow q\bar{q}/gg$ inclusively). Events are required to pass the complete event selection but not the classification NN requirement. The background normalization is set equal to that of the data for events passing the preselection and being in the $m_{\ell\ell j}$ 100-180 GeV region. The signal normalization assumes the SM Higgs boson inclusive production cross-section, $\mathcal{B}(H\to Za)=100\%$, and it is scaled up by a factor of 100. The error bars (hatched regions) represent the data (MC) sample's statistical uncertainty in the histograms and the ratio plots. Vertical arrows indicate data points that fall outside the displayed $y$-axis range.
A search for the non-resonant production of Higgs boson pairs in the $HH\rightarrow b\bar{b}\tau^+\tau^-$ channel is performed using 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $13$ TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The analysis strategy is optimised to probe anomalous values of the Higgs boson self-coupling modifier $\kappa_\lambda$ and of the quartic $HHVV$ ($V = W,Z$) coupling modifier $\kappa_{2V}$. No significant excess above the expected background from Standard Model processes is observed. An observed (expected) upper limit $\mu_{HH}<5.9$$(3.3)$ is set at 95% confidence-level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The coupling modifiers are constrained to an observed (expected) 95% confidence interval of $-3.1 < \kappa_\lambda < 9.0$ ($-2.5 < \kappa_\lambda < 9.3$) and $-0.5 < \kappa_{2V} < 2.7$ ($-0.2 < \kappa_{2V} < 2.4$), assuming all other Higgs boson couplings are fixed to the Standard Model prediction. The results are also interpreted in the context of effective field theories via constraints on anomalous Higgs boson couplings and Higgs boson pair production cross-sections assuming different kinematic benchmark scenarios.
Observed (filled circles) and expected (open circles) 95% CL upper limits on $\mu_{HH}$ from the fit of each individual channel and the combined fit in the background-only ($\mu_{HH} = 0$) hypothesis. The dashed lines indicate the expected 95% CL upper limits on $\mu_{HH}$ in the SM hypothesis ($\mu_{HH} = 1$). The inner and outer bands indicate the $\pm 1\sigma$ and $\pm 2\sigma$ variations, respectively, on the expected limit with respect to the background-only hypothesis due to statistical and systematic uncertainties.
Observed and expected 95% CL upper limits on $\mu_{HH}$, $\mu_{ggF}$ and $\mu_{VBF}$ from the individual SR likelihood fits as well as the combined results. The $\mu_{ggF}$ and $\mu_{VBF}$ limits are quoted both from the results of the simultaneous fit of both signal strengths (central column), and from independent fits for the individual production modes, assuming the other to be as predicted by the SM. The uncertainties quoted on the combined expected upper limits correspond to the 1σ uncertainty band.
Observed (solid line) value of $-2\ln\Lambda$ as a function of $\kappa_{\lambda}$ for the combined fit, when all other coupling modifiers are fixed to their SM predictions.
Searches for the exclusive decays of the Higgs boson into $D^*\gamma$ and of the $Z$ boson into $D^0\gamma$ and $K^0_s\gamma$ can probe flavour-violating Higgs and $Z$ boson couplings to light quarks. Searches for these decays are performed with a $pp$ collision data sample corresponding to an integrated luminosity of $136.3$ fb$^{-1}$ collected at $\sqrt{s}=13$ TeV between 2016-2018 with the ATLAS detector at the CERN Large Hadron Collider. In the $D^*\gamma$ and $D^0\gamma$ channels, the observed (expected) 95$\%$ confidence-level upper limits on the respective branching fractions are ${\cal B}(H\rightarrow D^*\gamma)< 1.0 (1.2)\times 10^{-3}$, ${\cal B}(Z\rightarrow D^0\gamma)< 4.0 (3.4)\times 10^{-6}$, while the corresponding results in the $K^0_s\gamma$ channel are ${\cal B}(Z\rightarrow K^0_s\gamma)< 3.1 (3.0)\times 10^{-6}$.
Numbers of observed and expected background events for the $m_{\mathcal{M}\gamma}$ ranges of interest. Each expected background and the corresponding uncertainty is obtained by integrating the total pdf after a background-only fit to the data, where the uncertainty does not take into account statistical fluctuations in each mass range. Expected Higgs and $Z$ boson signal contributions, with their corresponding total systematic uncertainty, are shown for reference branching fractions of $10^{-3}$ and $10^{-6}$, respectively. Entries are marked with a dash when there is no signal of that type in the specified range.
Observed and expected (with the corresponding $\pm1\sigma$ intervals) 95% CL upper limits on the branching fractions for $H\rightarrow D^*\gamma$, $Z\rightarrow D^0\gamma$ and $Z\rightarrow K^0_s\gamma$. Standard Model production of the Higgs boson is assumed. The corresponding upper limits on the production cross-section times branching fraction $\sigma\times\mathcal{B}$ are also shown.
A search for nonresonant Higgs boson pair production in the $b\bar{b}\gamma\gamma$ final state is performed using 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this final state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs ($H$) boson self-coupling modifier $\kappa_\lambda$ but also of the quartic $HHVV$ ($V=W,Z$) coupling modifier $\kappa_{2V}$. No significant excess above the expected background from Standard Model processes is observed. An observed upper limit $\mu_{HH}<4.0$ is set at 95% confidence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confidence intervals for the coupling modifiers are $-1.4<\kappa_\lambda<6.9$ and $-0.5<\kappa_{2V}<2.7$, assuming all other Higgs boson couplings except the one under study are fixed to the Standard Model predictions. The results are interpreted in the Standard Model effective field theory and Higgs effective field theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions.
Observed (solid line) value of $-2\ln\Lambda$ as a function of $\kappa_{\lambda}$, when all other coupling modifiers are fixed to their SM predictions.
Expected (dashed line) value of $-2\ln\Lambda$ as a function of $\kappa_{\lambda}$, when all other coupling modifiers are fixed to their SM predictions.
Observed (solid line) value of $-2\ln\Lambda$ as a function of $\kappa_{2V}$, when all other coupling modifiers are fixed to their SM predictions.
A search for non-resonant Higgs boson pair ($HH$) production is presented, in which one of the Higgs bosons decays to a b-quark pair ($b\bar b$) and the other decays to $WW^*$, $ZZ^*$, or $\tau^+\tau^-$, with in each case a final state with $\ell^+\ell^- +$ neutrinos ($\ell = e, \mu$). The analysis targets separately the gluon-gluon fusion and vector boson fusion production modes. Data recorded by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of $140\mathrm{fb}^{-1}$, are used in this analysis. Events are selected to have exactly two $b$-tagged jets and two leptons with opposite electric charge and missing transverse momentum in the final state. These events are classified using multivariate analysis algorithms to separate the $HH$ events from other Standard Model processes. No evidence of the signal is found. The observed (expected) upper limit on the cross-section for non-resonant Higgs boson pair production is determined to be 9.7 (16.2) times the Standard Model prediction at 95% confidence level. The Higgs boson self-interaction coupling parameter $\kappa_\lambda$ and the quadrilinear coupling parameter $\kappa_{2V}$ are each separately constrained by this analysis to be within the ranges ${[-6.2, 13.3]}$ and ${[-0.17, 2.4]}$, respectively, at 95% confidence level, when all other parameters are fixed.
Pre-fit yields of the $t\bar{t}$, $Z$+HF and $Wt$ CRs, both for the ggF and VBF event selection, as well as the highest-score bins, numbered from high (VBF-SR 1 and ggF-SR 1) to low score (VBF-SR 5 and ggF-SR 7), of the BDT and DNN output distribution in the VBF and ggF event categories, respectively, as used in the final result. The shaded bands include both statistical and systematic uncertainties.
Post-fit yields from the signal+background fit of the $t\bar{t}$, $Z$+HF and $Wt$ CRs, both for the ggF and VBF event selections, as well as the highest-score bins, numbered from high (VBF-SR 1 and ggF-SR 1) to low score (VBF-SR 5 and ggF-SR 7), of the BDT and DNN output distribution in the VBF and ggF event categories respectively as used in the final result. The fit is a conditional fit with the signal strength fixed to the observed upper limit of $\mu_{HH} = 9.7$. The shaded bands include both statistical and systematic uncertainties.
Observed and expected upper limits on the ratios of the Higgs boson pair production cross-section to the corresponding Standard Model prediction $\sigma_{HH}/\sigma^\mathrm{SM}_{HH}$ for the ggF $HH$ signal only (top row), the VBF $HH$ signal only while considering ggF $HH$ as background (second row) and the combined ggF+VBF $HH$ signal considering only the ggF SR (third row) and considering all SRs (bottom row) at a 95% confidence level. The relative ratio between the ggF and VBF production modes is fixed to the SM value.
Searches for the exclusive decays of the Higgs boson to an $\omega$ meson and a photon or a $K^{*}$ meson and a photon can probe flavour-conserving and flavour-violating Higgs boson couplings to light quarks, respectively. Searches for these decays, along with the analogous $Z$ boson decay to an $\omega$ meson and a photon, are performed with a $pp$ collision data sample corresponding to integrated luminosities of up to 134 fb$^{-1}$ collected at $\sqrt{s}=13$ TeV with the ATLAS detector at the CERN Large Hadron Collider. The obtained 95% confidence-level upper limits on the respective branching fractions are ${\cal B}(H\rightarrow\omega\gamma)< 5.5\times 10^{-4}$, ${\cal B}(H\rightarrow K^{*}\gamma)< 2.2\times10^{-4}$ and ${\cal B}(Z\rightarrow \omega\gamma)<3.9\times 10^{-6}$. The limits for $H\rightarrow \omega\gamma$ and $Z\rightarrow \omega\gamma$ are 370 times and 140 times the Standard Model expected values, respectively. The result for $Z\rightarrow \omega\gamma$ corresponds to a two-orders-of-magnitude improvement over the limit obtained by the DELPHI experiment at LEP.
Numbers of observed and expected background events for the $m_{\mathcal{M}\gamma}$ ranges of interest. Each expected background and the corresponding uncertainty of its mean is obtained from a background-only fit to the data; the uncertainty does not take into account statistical fluctuations in each mass range. Expected $Z$ and Higgs boson signal contributions, with their corresponding total systematic uncertainty, are shown for reference branching fractions of $10^{-6}$ and $10^{-4}$, respectively.
Expected and observed branching fraction limits at the 95% CL for $H/Z\rightarrow \omega\gamma$ and $H\rightarrow K^{*}\gamma$.
This paper reports a search for Higgs boson pair ($hh$) production in association with a vector boson ($W$ or $Z$) using 139 $fb^{-1}$ of proton-proton collision data at $\sqrt{s}=$ 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The search is performed in final states in which the vector boson decays leptonically ($W\to\ell\nu, Z\to\ell\ell,\nu\nu$ with $\ell=e, \mu$) and the Higgs bosons each decay into a pair of $b$-quarks. It targets $Vhh$ signals from both non-resonant $hh$ production, present in the Standard Model (SM), and resonant $hh$ production, as predicted in some SM extensions. A 95% confidence-level upper limit of 183 (87) times the SM cross-section is observed (expected) for non-resonant $Vhh$ production when assuming the kinematics are as expected in the SM. Constraints are also placed on Higgs boson coupling modifiers. For the resonant search, upper limits on the production cross-sections are derived for two specific models: one is the production of a vector boson along with a neutral heavy scalar resonance $H$, in the mass range 260-1000 GeV, that decays into $hh$, and the other is the production of a heavier neutral pseudoscalar resonance $A$ that decays into a $Z$ boson and $H$ boson, where the $A$ boson mass is 360-800 GeV and the $H$ boson mass is 260-400 GeV. Constraints are also derived in the parameter space of two-Higgs-doublet models.
Acceptance times efficiency as a function of resonant mass for each event selection step in the search for a neutral heavy scalar resonance produced in association with a Z boson decaying to neutrinos.
Acceptance times efficiency as a function of resonant mass for each event selection step in the search for a neutral heavy scalar resonance produced in association with a W boson decaying to a charged lepton and a neutrino.
Acceptance times efficiency as a function of resonant mass for each event selection step in the search for a neutral heavy scalar resonance produced in association with a Z boson decaying to charged leptons.