J/psi polarization in pp collisions at sqrt(s)=7 TeV

The ALICE collaboration Abelev, Betty ; Abrahantes Quintana, Arian ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 108 (2012) 082001, 2012.
Inspire Record 944730 DOI 10.17182/hepdata.73005

We have studied J/psi production in pp collisions at $\sqrt{s}=7$ TeV at the LHC through its muon pair decay. The polar and azimuthal angle distributions of the decay muons were measured, and results on the J/$\psi$ polarization parameters $\lambda_{\theta}$ and $\lambda_\phi$ were obtained. The study was performed in the kinematic region 2.5<y<4, 2<$p_{\rm T}$<8 GeV/$c$, in the helicity and Collins-Soper reference frames. In both frames, the polarization parameters are compatible with zero, within uncertainties.

4 data tables

$\lambda_\theta$ as a function of $p_{\rm T}$ for inclusive J/$\psi$, measured in the helicity reference frame.

$\lambda_\phi$ as a function of $p_{\rm T}$ for inclusive J/$\psi$, measured in the helicity reference frame.

$\lambda_\theta$ as a function of $p_{\rm T}$ for inclusive J/$\psi$, measured in the Collins-Soper reference frame.

More…

Underlying Event measurements in pp collisions at sqrt(s) = 0.9 and 7 TeV with the ALICE experiment at the LHC

The ALICE collaboration Abelev, Betty ; Abrahantes Quintana, Arian ; Adamova, Dagmar ; et al.
JHEP 07 (2012) 116, 2012.
Inspire Record 1080735 DOI 10.17182/hepdata.58863

We present measurements of Underlying Event observables in pp collisions at $\sqrt{s}$ = 0.9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum $p_{\rm T, LT}$ in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different $p_{\rm T}$ thresholds: 0.15, 0.5 and 1.0 GeV/$c$. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track $p){\rm T}$ threshold considered. Data are compared to Pythia 6.4, Pythia 8.1 and Phojet. On average, all models considered underestimate the multiplicity and summed $p_{\rm T}$ in the Transverse region by about 10-30%.

23 data tables

Number density as a function of the leading charged-particle PT at a centre-mass-energy of 900 GeV for events having charged-particle PT > 0.15 GeV. The data is shown for the three azimuthal regions.

Number density as a function of the leading charged-particle PT at a centre-mass-energy of 7000 GeV for events having charged-particle PT > 0.15 GeV. The data is shown for the three azimuthal regions.

Number density as a function of the leading charged-particle PT at a centre-mass-energy of 900 GeV for events having charged-particle PT > 0.5 GeV. The data is shown for the three azimuthal regions.

More…

Measurement of $\Upsilon$ production in $pp$ collisions at $\sqrt{s}$= 13 TeV

The LHCb collaboration Aaij, R. ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 07 (2018) 134, 2018.
Inspire Record 1670013 DOI 10.17182/hepdata.82210

The production cross-sections of $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ mesons in proton-proton collisions at $\sqrt{s}$= 13 TeV are measured with a data sample corresponding to an integrated luminosity of $277 \pm 11$ $\rm pb^{-1}$ recorded by the LHCb experiment in 2015. The $\Upsilon$ mesons are reconstructed in the decay mode $\Upsilon\to\mu^{+}\mu^{-}$. The differential production cross-sections times the dimuon branching fractions are measured as a function of the $\Upsilon$ transverse momentum, $p_{\rm T}$, and rapidity, $y$, over the range $0 < p_{\rm T}< 30$ GeV/c and $2.0 < y < 4.5$. The ratios of the cross-sections with respect to the LHCb measurement at $\sqrt{s}$= 8 TeV are also determined. The measurements are compared with theoretical predictions based on NRQCD.

14 data tables

Double-differential cross-sections times dimuon branching fraction in different bins of $p_T$ and $y$ for $\Upsilon$(1S) (in pb). The first uncertainty is statistical and the second is systematic.

Double-differential cross-sections times dimuon branching fraction in different bins of $p_T$ and $y$ for $\Upsilon$(2S) (in pb). The first uncertainty is statistical and the second is systematic.

Double-differential cross-sections times dimuon branching fraction in different bins of $p_T$ and $y$ for $\Upsilon$(3S) (in pb). The first uncertainty is statistical and the second is systematic.

More…

Measurement of $D_s^{\pm}$ production asymmetry in $pp$ collisions at $\sqrt{s} =7$ and 8 TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 08 (2018) 008, 2018.
Inspire Record 1674916 DOI 10.17182/hepdata.82715

The inclusive $D_s^{\pm}$ production asymmetry is measured in $pp$ collisions collected by the LHCb experiment at centre-of-mass energies of $\sqrt{s} =7$ and 8 TeV. Promptly produced $D_s^{\pm}$ mesons are used, which decay as $D_s^{\pm}\to\phi\pi^{\pm}$, with $\phi\to K^+K^-$. The measurement is performed in bins of transverse momentum, $p_{\rm T}$, and rapidity, $y$, covering the range $2.5

6 data tables

Values of the $D_s^+$ production asymmetry in percent, including, respectively, the statistical and systematic uncertainties for each of the $D_s^+$ kinematic bins using the combined $\sqrt{s} =7$ and 8 TeV data sets. The statistical and systematic uncertainties include the corresponding contributions from the detection asymmetries, and are therefore correlated between the bins. ASYM is defined as ASYM = ((SIG(D/S+)-SIG(D/S-))/(SIG(D/S+)+SIG(D/S+)).

Values of the $D_s^+$ production asymmetry in percent, including, respectively, the statistical and systematic uncertainties for each of the $D_s^+$ kinematic bins using the $\sqrt{s} =7$ TeV data set. The statistical and systematic uncertainties include the corresponding contributions from the detection asymmetries, and are therefore correlated between the bins. ASYM is defined as ASYM = ((SIG(D/S+)-SIG(D/S-))/(SIG(D/S+)+SIG(D/S+)).

Values of the $D_s^+$ production asymmetry in percent, including, respectively, the statistical and systematic uncertainties for each of the $D_s^+$ kinematic bins using the $\sqrt{s} =8$ TeV data set. The statistical and systematic uncertainties include the corresponding contributions from the detection asymmetries, and are therefore correlated between the bins. ASYM is defined as ASYM = ((SIG(D/S+)-SIG(D/S-))/(SIG(D/S+)+SIG(D/S+)).

More…

Measurement of the $\Upsilon$ polarization in $pp$ collisions at $\sqrt{s}$=7 and 8TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 12 (2017) 110, 2017.
Inspire Record 1621596 DOI 10.17182/hepdata.80046

The polarization of the $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S) $mesons, produced in $pp$ collisions at centre-of-mass energies $\sqrt{s}$=7 and 8TeV, is measured using data samples collected by the LHCb experiment, corresponding to integrated luminosities of 1 and 2fb$^{-1}$, respectively. The measurements are performed in three polarization frames, using $\Upsilon\to\mu^+\mu^-$ decays in the kinematic region of the transverse momentum $p_{T}(\Upsilon)<30GeV/c$, and rapidity $2.2<y(\Upsilon)<4.5$. No large polarization is observed.

96 data tables

The polarization parameter $\lambda_{\theta}$ measured in the helicity frame for the $\Upsilon(1S)$ state in different bins of $p_{T}^{\Upsilon}$ and three rapidity ranges using data collected at $\sqrt{s}=7\,\mathrm{TeV}$. The first uncertainty is statistical and the second is systematic.

The polarization parameter $\lambda_{\theta\phi}$ measured in the helicity frame for the $\Upsilon(1S)$ state in different bins of $p_{T}^{\Upsilon}$ and three rapidity ranges using data collected at $\sqrt{s}=7\,\mathrm{TeV}$. The first uncertainty is statistical and the second represents the systematic uncertainty.

The polarization parameter $\lambda_{\phi}$ measured in the helicity frame for the $\Upsilon(1S)$ state in different bins of $p_{T}^{\Upsilon}$ and three rapidity ranges using data collected at $\sqrt{s}=7\,\mathrm{TeV}$. The first uncertainty is statistical and the second is systematic.

More…

Measurement of the inelastic $pp$ cross-section at a centre-of-mass energy of 13 TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 06 (2018) 100, 2018.
Inspire Record 1665223 DOI 10.17182/hepdata.89782

The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13\,TeV is measured with the LHCb detector. The fiducial cross-section for inelastic interactions producing at least one prompt long-lived charged particle with momentum $p>2$\,GeV/$c$ in the pseudorapidity range $2<\eta<5$ is determined to be $\sigma_{\rm acc}= 62.2 \pm 0.2 \pm 2.5$\,mb. The first uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section $\sigma_{\rm inel}= 75.4 \pm 3.0 \pm 4.5$\,mb, where the first uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7\,TeV is also reported.

3 data tables

The cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, yielding one or more prompt long-lived charged particles in the kinematic range $p > 2.0$ GeV/$c$ and $2.0 < \eta < 5.0$ (LHCb acceptance). The quoted uncertainty that is almost completely systematic in nature as the purely statistical uncertainty is found negligible. A particle is long-lived if its proper (mean) lifetime is larger than 30 ps, and it is prompt if it is produced directly in the $pp$ interaction or if none of its ancestors is long-lived.

The total cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, extrapolated from Monte Carlo in similar way to measurement at $\sqrt{s}=7$ TeV.

Update of the total cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 7$ TeV due to improved calibration of the luminosity scale.


Measurement of forward top pair production in the dilepton channel in $pp$ collisions at $\sqrt{s}=13$ TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 08 (2018) 174, 2018.
Inspire Record 1662483 DOI 10.17182/hepdata.97367

Forward top quark pair production is studied in $pp$ collisions in the $\mu eb$ final state using a data sample corresponding to an integrated luminosity of 1.93 fb$^{-1}$ collected with the LHCb experiment at a centre-of-mass energy of 13 TeV. The cross-section is measured in a fiducial region where both leptons have a transverse momentum greater than 20 GeV and a pseudorapidity between 2.0 and 4.5. The quadrature sum of the azimuthal separation and the difference in pseudorapidities, denoted $\Delta R$, between the two leptons must be larger than 0.1. The $b$-jet axis is required to be separated from both leptons by a $\Delta R$ of 0.5, and to have a transverse momentum in excess of 20 GeV and a pseudorapidity between 2.2 and 4.2. The cross-section is measured to be $$\sigma_{t\bar{t}}= 126\pm19\,(\mathrm{stat})\pm16\,(\mathrm{syst})\pm5\,(\mathrm{lumi})\,\,\mathrm{ fb}$$ where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measurement is compatible with the Standard Model prediction.

1 data table

The measured fiducial cross section. The uncertainty is split into statistical, systematic and uncertainty due to luminosity.


Test of lepton universality in beauty-quark decays

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Ackernley, Thomas ; et al.
Nature Phys. 18 (2022) 277-282, 2022.
Inspire Record 1852846 DOI 10.17182/hepdata.106855

The Standard Model of particle physics currently provides our best description of fundamental particles and their interactions. The theory predicts that the different charged leptons, the electron, muon and tau, have identical electroweak interaction strengths. Previous measurements have shown a wide range of particle decays are consistent with this principle of lepton universality. This article presents evidence for the breaking of lepton universality in beauty-quark decays, with a significance of 3.1 standard deviations, based on proton-proton collision data collected with the LHCb detector at CERN's Large Hadron Collider. The measurements are of processes in which a beauty meson transforms into a strange meson with the emission of either an electron and a positron, or a muon and an antimuon. If confirmed by future measurements, this violation of lepton universality would imply physics beyond the Standard Model, such as a new fundamental interaction between quarks and leptons.

1 data table

Likelihood function from the fit to the nonresonant $B^+$ --> $K^+\ell^+ \ell^−$ candidates profiled as a function of $R_K$.


Observation of an exotic narrow doubly charmed tetraquark

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellán Beteta, Carlos ; et al.
Nature Phys. 18 (2022) 751-754, 2022.
Inspire Record 1915457 DOI 10.17182/hepdata.114869

Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. The observation of a new type of hadronic state, a doubly charmed tetraquark containing two charm quarks, an anti-$u$ and an anti-$d$ quark, is reported using data collected by the LHCb experiment at the Large Hadron Collider. This exotic state with a mass of about 3875 MeV$/c^2$ manifests itself as a narrow peak in the mass spectrum of $D^0D^0\pi^+$ mesons just below the $D^{*+}D^0$ mass threshold. The near threshold mass together with a strikingly narrow width reveals the resonance nature of the state.

2 data tables

Distribution of $D^0 D^0 \pi^+$ mass where the contribution of the non-$D^0$ background has been statistically subtracted. Uncertainties on the data points are statistical only and represent one standard deviation, calculated as a sum in quadrature of the assigned weights from the background-subtraction procedure.

Distribution of $D^0 D^0 \pi^+$ mass where the contribution of the non-$D^0$ background has been statistically subtracted by assigning the a weight to every candidate.


Study of the doubly charmed tetraquark $T_{cc}^+$

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellán Beteta, Carlos ; et al.
Nature Commun. 13 (2022) 3351, 2022.
Inspire Record 1915358 DOI 10.17182/hepdata.113470

An exotic narrow state in the $D^0D^0\pi^+$ mass spectrum just below the $D^{*+}D^0$ mass threshold is studied using a data set corresponding to an integrated luminosity of 9 fb$^{-1}$ acquired with the LHCb detector in proton-proton collisions at centre-of-mass energies of 7, 8 and 13 TeV. The state is consistent with the ground isoscalar $T^+_{cc}$ tetraquark with a quark content of $cc\bar{u}\bar{d}$ and spin-parity quantum numbers $\mathrm{J}^{\mathrm{P}}=1^+$. Study of the $DD$ mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell $D^{*+}$ mesons is confirmed by the $D^0\pi^+$ mass distribution. The mass of the resonance and its coupling to the $D^{*}D$ system are analysed. Resonance parameters including the pole position, scattering length, effective range and compositeness are measured to reveal important information about the nature of the $T^+_{cc}$ state. In addition, an unexpected dependence of the production rate on track multiplicity is observed.

20 data tables

Distribution of $D^0 D^0 \pi^+$ mass where the contribution of the non-$D^0$ background has been statistically subtracted. Uncertainties on the data points are statistical only and represent one standard deviation, calculated as a sum in quadrature of the assigned weights from the background-subtraction procedure.

Mass distribution for $D^0 \pi^+$ pairs from selected $D^0 D^0 \pi^+$ candidates with a mass below the $D^{*+}D^0$ mass threshold with non-$D^0$ background subtracted. Uncertainties on the data points are statistical only and represent one standard deviation, calculated as a sum in quadrature of the assigned weights from the background-subtraction procedure.

$D^0 D^0$~mass distributions for selected candidates with the $D^0$ background subtracted. Uncertainties on the data points are statistical only and represent one standard deviation, calculated as a sum in quadrature of the assigned weights from the background-subtraction procedure.

More…