Study of azimuthal anisotropy of $\Upsilon$(1S) mesons in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 850 (2024) 138518, 2024.
Inspire Record 2706679 DOI 10.17182/hepdata.131311

The azimuthal anisotropy of $\Upsilon$(1S) mesons in high-multiplicity proton-lead collisions is studied using data collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 8.16 TeV. The $\Upsilon$(1S) mesons are reconstructed using their dimuon decay channel. The anisotropy is characterized by the second Fourier harmonic coefficients, found using a two-particle correlation technique, in which the $\Upsilon$(1S) mesons are correlated with charged hadrons. A large pseudorapidity gap is used to suppress short-range correlations. Nonflow contamination from the dijet background is removed using a low-multiplicity subtraction method, and the results are presented as a function of $\Upsilon$(1S) transverse momentum. The azimuthal anisotropies are smaller than those found for charmonia in proton-lead collisions at the same collision energy, but are consistent with values found for $\Upsilon$(1S) mesons in lead-lead interactions at a nucleon-nucleon center-of-mass energy of 5.02 TeV.

2 data tables

The $p_{\mathrm{T}}$ dependent $v_{2}^{\textrm{sub}}$ values of $\Upsilon(1S)$ mesons measured in the high-multiplicity region of $70 \leq N^{\text{offline}}_{\text{trk}} < 300$, where a low-multiplicity region of $N^{\text{offline}}_{\text{trk}} < 50$ is used to estimate and correct for the dijet contribution.

The $p_{\mathrm{T}}$ dependent $v_{2}^{\textrm{sub}}$ values of $\Upsilon(1S)$ mesons measured in the high-multiplicity region of $70 \leq N^{\text{offline}}_{\text{trk}} < 300$, where a low-multiplicity region of $N^{\text{offline}}_{\text{trk}} < 50$ is used to estimate and correct for the dijet contribution.


Measurement of higher cumulants of net-charge multiplicity distributions in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=7.7-200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 011901, 2016.
Inspire Record 1378005 DOI 10.17182/hepdata.146751

We report the measurement of cumulants ($C_n, n=1\ldots4$) of the net-charge distributions measured within pseudorapidity ($|\eta|<0.35$) in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=7.7-200$ GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. $C_1/C_2$, $C_3/C_1$) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of $C_1/C_2 = \mu/\sigma^2$ and $C_3/C_1 = S\sigma^3/\mu$ can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy.

10 data tables

Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.

Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.

Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.

More…

Systematic studies of the centrality and s(NN)**(1/2) dependence of dE(T)/d mu and d N(ch)/d mu in heavy ion collisions at mid-rapidity.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 71 (2005) 034908, 2005.
Inspire Record 659749 DOI 10.17182/hepdata.142940

The PHENIX experiment at RHIC has measured transverse energy and charged particle multiplicity at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV as a function of centrality. The presented results are compared to measurements from other RHIC experiments, and experiments at lower energies. The sqrt(s_NN) dependence of dE_T/deta and dN_ch/deta per pair of participants is consistent with logarithmic scaling for the most central events. The centrality dependence of dE_T/deta and dN_ch/deta is similar at all measured incident energies. At RHIC energies the ratio of transverse energy per charged particle was found independent of centrality and growing slowly with sqrt(s_NN). A survey of comparisons between the data and available theoretical models is also presented.

13 data tables

$B$/$A$ ratio from the fit to the data.

$B$/$A$ ratio from the fit to the data.

Parameter $\alpha$ from the fit to the data.

More…

$K^{*0}$ production in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7, 11.5, 14.5, 19.6, 27 and 39 GeV from RHIC beam energy scan

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 107 (2023) 034907, 2023.
Inspire Record 2642282 DOI 10.17182/hepdata.134956

We report the measurement of $K^{*0}$ meson at midrapidity ($|y|<$ 1.0) in Au+Au collisions at $\sqrt{s_{\rm NN}}$~=~7.7, 11.5, 14.5, 19.6, 27 and 39 GeV collected by the STAR experiment during the RHIC beam energy scan (BES) program. The transverse momentum spectra, yield, and average transverse momentum of $K^{*0}$ are presented as functions of collision centrality and beam energy. The $K^{*0}/K$ yield ratios are presented for different collision centrality intervals and beam energies. The $K^{*0}/K$ ratio in heavy-ion collisions are observed to be smaller than that in small system collisions (e+e and p+p). The $K^{*0}/K$ ratio follows a similar centrality dependence to that observed in previous RHIC and LHC measurements. The data favor the scenario of the dominance of hadronic re-scattering over regeneration for $K^{*0}$ production in the hadronic phase of the medium.

71 data tables

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 0-20%).

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 20-40%).

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 40-60%).

More…

Charged-particle angular correlations in XeXe collisions at $\sqrt{s_{_\mathrm{NN}}}=$ 5.44 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.C 100 (2019) 044902, 2019.
Inspire Record 1716441 DOI 10.17182/hepdata.88276

Azimuthal correlations of charged particles in xenon-xenon collisions at a center-of-mass energy per nucleon pair of $ \sqrt{s_{_\mathrm{NN}}} =$ 5.44 TeV are studied. The data were collected by the CMS experiment at the LHC with a total integrated luminosity of 3.42 $\mu$b$^{-1}$. The collective motion of the system formed in the collision is parameterized by a Fourier expansion of the azimuthal particle density distribution. The azimuthal anisotropy coefficients $v_{2}$, $v_{3}$, and $v_{4}$ are obtained by the scalar-product, two-particle correlation, and multiparticle correlation methods. Within a hydrodynamic picture, these methods have different sensitivities to non-collective and fluctuation effects. The dependence of the Fourier coefficients on the size of the colliding system is explored by comparing the xenon-xenon results with equivalent lead-lead data. Model calculations that include initial-state fluctuation effects are also compared to the experimental results. The observed angular correlations provide new constraints on the hydrodynamic description of heavy ion collisions.

24 data tables

Elliptic-flow coefficients $v_2$ based on the two-particle correlations technique, as functions of transverse momentum and in bins of centrality. The results correspond to the range $|\eta| < 2.4$.

Elliptic-flow coefficients $v_2$ based on the scalar-product technique, as functions of transverse momentum and in bins of centrality. The results correspond to the range $|\eta| < 0.8$.

Elliptic-flow coefficients $v_2$ based on the four-particle correlations technique, as functions of transverse momentum and in bins of centrality. The results correspond to the range $|\eta| < 2.4$.

More…

Version 2
Global $\Lambda$ hyperon polarization in nuclear collisions: evidence for the most vortical fluid

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Nature 548 (2017) 62-65, 2017.
Inspire Record 1510474 DOI 10.17182/hepdata.77494

The extreme temperatures and energy densities generated by ultra-relativistic collisions between heavy nuclei produce a state of matter with surprising fluid properties. Non-central collisions have angular momentum on the order of 1000$\hbar$, and the resulting fluid may have a strong vortical structure that must be understood to properly describe the fluid. It is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have so far been found. Here we present the first measurement of an alignment between the angular momentum of a non-central collision and the spin of emitted particles, revealing that the fluid produced in heavy ion collisions is by far the most vortical system ever observed. We find that $\Lambda$ and $\overline{\Lambda}$ hyperons show a positive polarization of the order of a few percent, consistent with some hydrodynamic predictions. A previous measurement that reported a null result at higher collision energies is seen to be consistent with the trend of our new observations, though with larger statistical uncertainties. These data provide the first experimental access to the vortical structure of the "perfect fluid" created in a heavy ion collision. They should prove valuable in the development of hydrodynamic models that quantitatively connect observations to the theory of the Strong Force. Our results extend the recent discovery of hydrodynamic spin alignment to the subatomic realm.

2 data tables

Lambda and AntiLambda polarization as a function of collision energy. A 0.8% error on the alpha value used in the paper is corrected in this table. Systematic error bars include those associated with particle identification (negligible), uncertainty in the value of the hyperon decay parameter (2%) and reaction plane resolution (2%) and detector efficiency corrections (4%). The dominant systematic error comes from statistical fluctuations of the estimated combinatoric background under the (anti-)$\Lambda$ mass peak.

Lambda and AntiLambda polarization as a function of collision energy calculated using the new $\alpha_\Lambda=0.732$ updated on PDG2020. Systematic error bars include those associated with particle identification (negligible), uncertainty in the value of the hyperon decay parameter (2%) and reaction plane resolution (2%) and detector efficiency corrections (4%). The dominant systematic error comes from statistical fluctuations of the estimated combinatoric background under the (anti-)$\Lambda$ mass peak.


Version 2
Centrality dependence of identified particles in relativistic heavy ion collisions at sqrt(s)= 7.7-62.4 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 93 (2016) 014907, 2016.
Inspire Record 1395151 DOI 10.17182/hepdata.71527

Elliptic flow (v_2) values for identified particles at midrapidity in Au + Au collisions measured by the STAR experiment in the Beam Energy Scan at the Relativistic Heavy Ion Collider at sqrt{s_{NN}}= 7.7--62.4 GeV are presented for three centrality classes. The centrality dependence and the data at sqrt{s_{NN}}= 14.5 GeV are new. Except at the lowest beam energies we observe a similar relative v_2 baryon-meson splitting for all centrality classes which is in agreement within 15% with the number-of-constituent quark scaling. The larger v_2 for most particles relative to antiparticles, already observed for minimum bias collisions, shows a clear centrality dependence, with the largest difference for the most central collisions. Also, the results are compared with A Multiphase Transport Model and fit with a Blast Wave model.

788 data tables

No description provided.

The difference in $v_{2}$ between particles (X) and their corresponding antiparticles $\bar{X}$ (see legend) as a function of $\sqrt{s_{NN}}$ for 10%-40% central Au + Au collisions. The systematic errors are shown by the hooked error bars. The dashed lines in the plot are fits with a power-law function.

No description provided.

More…

Version 2
Strange hadron production in pp and pPb collisions at $\sqrt{s_\mathrm{NN}}= $ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.C 101 (2020) 064906, 2020.
Inspire Record 1758692 DOI 10.17182/hepdata.88283

The transverse momentum ($p_\mathrm{T}$) distributions of $\Lambda$, $\Xi^-$, and $\Omega^-$ baryons, their antiparticles, and K$^0_\mathrm{S}$ mesons are measured in proton-proton (pp) and proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV over a broad rapidity range. The data, corresponding to integrated luminosities of 40.2 nb$^{-1}$ and 15.6 $\mu$b$^{-1}$ for pp and pPb collisions, respectively, were collected by the CMS experiment. The nuclear modification factor $R_\mathrm{pPb}$, defined as the ratio of the particle yield in pPb collisions and a scaled pp reference, is measured for each particle. A strong dependence on particle species is observed in the $p_\mathrm{T}$ range from 2 to 7 GeV, where $R_\mathrm{pPb}$ for K$^0_\mathrm{S}$ is consistent with unity, while an enhancement ordered by strangeness content and/or particle mass is observed for the three baryons. In pPb collisions, the strange hadron production is asymmetric about the nucleon-nucleon center-of-mass rapidity. Enhancements, which depend on the particle type, are observed in the direction of the Pb beam. The results are compared to predictions from EPOS LHC, which includes parametrized radial flow. The model is in qualitative agreement with the $R_\mathrm{pPb}$ data, but fails to describe the dependence on particle species in the yield asymmetries measured away from mid-rapidity in pPb collisions.

37 data tables

Invariant $p_{T}$-differential spectra of ${K_{0}}^{S}$ in p+p and p+Pb at $\sqrt{s}$=5.02 TeV in various |$y_{CM}$| ranges

Invariant $p_{T}$-differential spectra of ${K_{0}}^{S}$ in p+p and p+Pb at $\sqrt{s}$=5.02 TeV in various $y_{CM}$ ranges

Invariant $p_{T}$-differential spectra of $\Lambda + \bar{\Lambda}$ in p+p and p+Pb at $\sqrt{s}$=5.02 TeV in various |$y_{CM}$| ranges

More…

Elliptic flow of identified hadrons in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7--62.4 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 88 (2013) 014902, 2013.
Inspire Record 1210464 DOI 10.17182/hepdata.102408

Measurements of the elliptic flow, $v_{2}$, of identified hadrons ($\pi^{\pm}$, $K^{\pm}$, $K_{s}^{0}$, $p$, $\bar{p}$, $\phi$, $\Lambda$, $\bar{\Lambda}$, $\Xi^{-}$, $\bar{\Xi}^{+}$, $\Omega^{-}$, $\bar{\Omega}^{+}$) in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV are presented. The measurements were done at mid-rapidity using the Time Projection Chamber and the Time-of-Flight detectors of the STAR experiment during the Beam Energy Scan program at RHIC. A significant difference in the $v_{2}$ values for particles and the corresponding anti-particles was observed at all transverse momenta for the first time. The difference increases with decreasing center-of-mass energy, $\sqrt{s_{NN}}$ (or increasing baryon chemical potential, $\mu_{B}$) and is larger for the baryons as compared to the mesons. This implies that particles and anti-particles are no longer consistent with the universal number-of-constituent quark (NCQ) scaling of $v_{2}$ that was observed at $\sqrt{s_{NN}}=$ 200 GeV. However, for the group of particles NCQ scaling at $(m_{T}-m_{0})/n_{q}>$ 0.4 GeV/$c^{2}$ is not violated within $\pm$10%. The $v_{2}$ values for $\phi$ mesons at 7.7 and 11.5 GeV are approximately two standard deviations from the trend defined by the other hadrons at the highest measured $p_{T}$ values.

342 data tables

The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.

The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.

The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.

More…

Measurement of elliptic flow of light nuclei at $\sqrt{s_{NN}}$ = 200, 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 94 (2016) 034908, 2016.
Inspire Record 1416992 DOI 10.17182/hepdata.104505

We present measurements of 2$^{nd}$ order azimuthal anisotropy ($v_{2}$) at mid-rapidity $(|y|<1.0)$ for light nuclei d, t, $^{3}$He (for $\sqrt{s_{NN}}$ = 200, 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV) and anti-nuclei $\bar{\rm d}$ ($\sqrt{s_{NN}}$ = 200, 62.4, 39, 27, and 19.6 GeV) and $^{3}\bar{\rm He}$ ($\sqrt{s_{NN}}$ = 200 GeV) in the STAR (Solenoidal Tracker at RHIC) experiment. The $v_{2}$ for these light nuclei produced in heavy-ion collisions is compared with those for p and $\bar{\rm p}$. We observe mass ordering in nuclei $v_{2}(p_{T})$ at low transverse momenta ($p_{T}<2.0$ GeV/$c$). We also find a centrality dependence of $v_{2}$ for d and $\bar{\rm d}$. The magnitude of $v_{2}$ for t and $^{3}$He agree within statistical errors. Light-nuclei $v_{2}$ are compared with predictions from a blast wave model. Atomic mass number ($A$) scaling of light-nuclei $v_{2}(p_{T})$ seems to hold for $p_{T}/A < 1.5$ GeV/$c$. Results on light-nuclei $v_{2}$ from a transport-plus-coalescence model are consistent with the experimental measurements.

19 data tables

Mid-rapidity v2(pT) for d,anti-d,t,He,anti-He from minimum bias (0-80%) Au+Au collisions 200 GeV (d data points are also shown in Fig 5).

Mid-rapidity v2(pT) for d,anti-d,t,He from minimum bias (0-80%) Au+Au collisions 62.4 GeV.

Mid-rapidity v2(pT) for d,anti-d,t,He from minimum bias (0-80%) Au+Au collisions 39 GeV.

More…

Observation of an energy-dependent difference in elliptic flow between particles and anti-particles in relativistic heavy ion collisions

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 110 (2013) 142301, 2013.
Inspire Record 1210463 DOI 10.17182/hepdata.102939

Elliptic flow ($v_{2}$) values for identified particles at mid-rapidity in Au+Au collisions, measured by the STAR experiment in the Beam Energy Scan at RHIC at $\sqrt{s_{NN}}=$ 7.7--62.4 GeV, are presented. A beam-energy dependent difference of the values of $v_{2}$ between particles and corresponding anti-particles was observed. The difference increases with decreasing beam energy and is larger for baryons compared to mesons. This implies that, at lower energies, particles and anti-particles are not consistent with the universal number-of-constituent-quark (NCQ) scaling of $v_{2}$ that was observed at $\sqrt{s_{NN}}=$ 200 GeV.

99 data tables

The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.

The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.

The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.

More…

Incident energy dependence of p(t) correlations at RHIC.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 72 (2005) 044902, 2005.
Inspire Record 681688 DOI 10.17182/hepdata.102946

We present results for two-particle transverse momentum correlations, <dpt,i dpt,j>, as a function of event centrality for Au+Au collisions at sqrt(sNN) = 20, 62, 130, and 200 GeV at the Relativistic Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four incident energies. The correlations multiplied by the multiplicity density increase with incident energy and the centrality dependence may show evidence of processes such as thermalization, minijet production, or the saturation of transverse flow. The square root of the correlations divided by the event-wise average transverse momentum per event shows little or no beam energy dependence and generally agrees with previous measurements at the Super Proton Synchrotron.

8 data tables

Average transverse momentum per event for Au+Au at $\sqrt{s_{NN}}$ = 20 GeV for the 5% most central collisions.

Average transverse momentum per event for Au+Au at $\sqrt{s_{NN}}$ = 62 GeV for the 5% most central collisions.

Average transverse momentum per event for Au+Au at $\sqrt{s_{NN}}$ = 130 GeV for the 5% most central collisions.

More…

Inclusive charged hadron elliptic flow in Au + Au collisions at $\sqrt{s_{NN}}$ = 7.7 - 39 GeV

The STAR collaboration Adamczyk, L. ; Agakishiev, G. ; Aggarwal, M.M. ; et al.
Phys.Rev.C 86 (2012) 054908, 2012.
Inspire Record 1119620 DOI 10.17182/hepdata.102951

A systematic study is presented for centrality, transverse momentum ($p_T$) and pseudorapidity ($\eta$) dependence of the inclusive charged hadron elliptic flow ($v_2$) at midrapidity($|\eta| < 1.0$) in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27 and 39 GeV. The results obtained with different methods, including correlations with the event plane reconstructed in a region separated by a large pseudorapidity gap and 4-particle cumulants ($v_2{4}$), are presented in order to investigate non-flow correlations and $v_2$ fluctuations. We observe that the difference between $v_2{2}$ and $v_2{4}$ is smaller at the lower collision energies. Values of $v_2$, scaled by the initial coordinate space eccentricity, $v_{2}/\varepsilon$, as a function of $p_T$ are larger in more central collisions, suggesting stronger collective flow develops in more central collisions, similar to the results at higher collision energies. These results are compared to measurements at higher energies at the Relativistic Heavy Ion Collider ($\sqrt{s_{NN}}$ = 62.4 and 200 GeV) and at the Large Hadron Collider (Pb + Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV). The $v_2(p_T)$ values for fixed $p_T$ rise with increasing collision energy within the $p_T$ range studied ($< 2 {\rm GeV}/c$). A comparison to viscous hydrodynamic simulations is made to potentially help understand the energy dependence of $v_{2}(p_{T})$. We also compare the $v_2$ results to UrQMD and AMPT transport model calculations, and physics implications on the dominance of partonic versus hadronic phases in the system created at Beam Energy Scan (BES) energies are discussed.

12 data tables

The event plane resolutions for Au + Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27 and 39 GeV as a function of collision centrality.

The comparison of $v_2$ as a function of $p_T$ between GF-cumulant and Q-cumulant methods in Au+Au collisions at $\sqrt{s_{NN}}$ = 39 GeV.

The $p_T$ (> 0.2 GeV/c) and $\eta$ ($∣\eta∣$ < 1) integrated $v_2$ as a function of collision centrality for Au + Au collisions at $\sqrt{s_{NN}}$ = 7.7 GeV, 11.5 GeV, 19.6 GeV, 27 GeV and 39 GeV.

More…

Beam energy dependence of rapidity-even dipolar flow in Au+Au collisions

The STAR collaboration Adam, J. ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 784 (2018) 26-32, 2018.
Inspire Record 1669807 DOI 10.17182/hepdata.100168

New measurements of directed flow for charged hadrons, characterized by the Fourier coefficient \vone, are presented for transverse momenta $\mathrm{p_T}$, and centrality intervals in Au+Au collisions recorded by the STAR experiment for the center-of-mass energy range $\mathrm{\sqrt{s_{_{NN}}}} = 7.7 - 200$ GeV. The measurements underscore the importance of momentum conservation and the characteristic dependencies on $\mathrm{\sqrt{s_{_{NN}}}}$, centrality and $\mathrm{p_T}$ are consistent with the expectations of geometric fluctuations generated in the initial stages of the collision, acting in concert with a hydrodynamic-like expansion. The centrality and $\mathrm{p_T}$ dependencies of $\mathrm{v^{even}_{1}}$, as well as an observed similarity between its excitation function and that for $\mathrm{v_3}$, could serve as constraints for initial-state models. The $\mathrm{v^{even}_{1}}$ excitation function could also provide an important supplement to the flow measurements employed for precision extraction of the temperature dependence of the specific shear viscosity.

5 data tables

$v_{11}$ vs. $p_{T}^{b}$ for several selections of $p_{T}^{a}$ for 0-5 central Au+Au collisions at $\sqrt{s_{_{NN}}} = 200$ GeV. The curve shows the result of the simultaneous fit.

Extracted values of $v^{even}_{1}$ vs. $p_{T}$ for 0-10 central Au+Au collisions for several values of $\sqrt{s_{_{NN}}}$ as indicated; the $v^{even}_{1}$ values are obtained via fits. The curve in panel (a) shows the result from a viscous hydrodynamically based predictions.

(a) Centrality dependence of $v^{even}_{1}$ for $0.4 \lt p_{T} \lt 0.7$ GeV/c for Au+Au collisions at $\sqrt{s_{_{NN}}} = 200, 39$ and $19.6$ GeV; (b) $K$ vs. $\langle N_{ch} \rangle^{-1}$ for the $v^{even}_{1}$ values shown in (a). The $\langle N_{ch} \rangle$ values correspond to the centrality intervals indicated in panel (a).

More…

K/pi Fluctuations at Relativistic Energies

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 103 (2009) 092301, 2009.
Inspire Record 810902 DOI 10.17182/hepdata.98971

We report results for $K/\pi$ fluctuations from Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6, 62.4, 130, and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider. Our results for $K/\pi$ fluctuations in central collisions show little dependence on the incident energies studied and are on the same order as results observed by NA49 at the Super Proton Synchrotron in central Pb+Pb collisions at $\sqrt{s_{NN}}$ = 12.3 and 17.3 GeV. We also report results for the collision centrality dependence of $K/\pi$ fluctuations as well as results for $K^{+}/\pi^{+}$, $K^{-}/\pi^{-}$, $K^{+}/\pi^{-}$, and $K^{-}/\pi^{+}$ fluctuations. We observe that the $K/\pi$ fluctuations scale with the multiplicity density, $dN/d\eta$, rather than the number of participating nucleons.

5 data tables

(Color online) The event-by-event $K/\pi$ ratio for 200 GeV Au+Au central collisions (0-5%) compared with the same quantity calculated from mixed events. The inset shows the ratio of the distribution from real events to that from mixed events. The errors shown are statistical.

(Color online) The event-by-event $K/\pi$ ratio for 200 GeV Au+Au central collisions (0-5%) compared with the same quantity calculated from mixed events. The inset shows the ratio of the distribution from real events to that from mixed events. The errors shown are statistical.

(Color online) Measured dynamical $K/\pi$ fluctuations in terms of σdyn for central collisions (0 - 5%) of 19.6, 62.4, 130, and 200 GeV Au+Au compared with the central collisions (0 - 3.5%) of Pb+Pb from NA49 [7] and the statistical hadronization (SH) model of Ref. [14]. The solid line represents the relationship of the incident energy dependence of $\sigma_{dyn}$ in central collisions to the collision centrality dependence of $\nu_{dyn,K\pi}$ at higher energies. Both statistical (vertical line with horizontal bar) and systematic (no vertical line) error bars are shown for the experimental data.

More…

Beam Energy Dependence of Jet-Quenching Effects in Au+Au Collisions at $\sqrt{s_{_{ \mathrm{NN}}}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV

The STAR collaboration Adamczyk, L. ; Adams, J.R. ; Adkins, J.K. ; et al.
Phys.Rev.Lett. 121 (2018) 032301, 2018.
Inspire Record 1609067 DOI 10.17182/hepdata.100537

We report measurements of the nuclear modification factor, $R_{ \mathrm{CP}}$, for charged hadrons as well as identified $\pi^{+(-)}$, $K^{+(-)}$, and $p(\overline{p})$ for Au+Au collision energies of $\sqrt{s_{_{ \mathrm{NN}}}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV. We observe a clear high-$p_{\mathrm{T}}$ net suppression in central collisions at 62.4 GeV for charged hadrons which evolves smoothly to a large net enhancement at lower energies. This trend is driven by the evolution of the pion spectra, but is also very similar for the kaon spectra. While the magnitude of the proton $R_{ \mathrm{CP}}$ at high $p_{\mathrm{T}}$ does depend on collision energy, neither the proton nor the anti-proton $R_{ \mathrm{CP}}$ at high $p_{\mathrm{T}}$ exhibit net suppression at any energy. A study of how the binary collision scaled high-$p_{\mathrm{T}}$ yield evolves with centrality reveals a non-monotonic shape that is consistent with the idea that jet-quenching is increasing faster than the combined phenomena that lead to enhancement.

118 data tables

Charged hadron RCP for RHIC BES energies. The uncertainty bands at unity on the right side of the plot correspond to the pT-independent uncertainty in Ncoll scaling with the color in the band corresponding to the color of the data points for that energy. The vertical uncertainty bars correspond to statistical uncertainties and the boxes to systematic uncertainties.

Identified particle (Pion Plus) RCP for RHIC BES energies. The colored shaded boxes describe the point-to-point systematic uncertainties. The uncertainty bands at unity on the right side of the plot correspond to the pT -independent uncertainty in Ncoll scaling with the color in the band corresponding to the color of the data points for that energy.

Identified particle (Pion Minus) RCP for RHIC BES energies. The colored shaded boxes describe the point-to-point systematic uncertainties. The uncertainty bands at unity on the right side of the plot correspond to the pT -independent uncertainty in Ncoll scaling with the color in the band corresponding to the color of the data points for that energy.

More…

Beam-Energy Dependence of Charge Balance Functions from Au+Au Collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 94 (2016) 024909, 2016.
Inspire Record 1382600 DOI 10.17182/hepdata.99053

Balance functions have been measured in terms of relative pseudorapidity ($\Delta \eta$) for charged particle pairs at the Relativistic Heavy-Ion Collider (RHIC) from Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the Large Hadron Collider (LHC) from Pb+Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at $\sqrt{s_{\rm NN}}$ = 7.7 GeV implies that a QGP is still being created at this relatively low energy.

31 data tables

The balance function in terms of $\Delta \eta$ for all charged particles with $0.2 < p_{T} < 2.0$ GeV/$c$ from central Au+Au collisions (0-5%) for $\sqrt{s_{NN}}=7.7$ GeV. The data are the measured balance functions corrected by subtracting balance functions calculated using mixed events. Also shown are balance functions calculated using shuffled events.

The balance function in terms of $\Delta \eta$ for all charged particles with $0.2 < p_{T} < 2.0$ GeV/$c$ from central Au+Au collisions (0-5%) for $\sqrt{s_{NN}}=11.5$ GeV. The data are the measured balance functions corrected by subtracting balance functions calculated using mixed events. Also shown are balance functions calculated using shuffled events.

The balance function in terms of $\Delta \eta$ for all charged particles with $0.2 < p_{T} < 2.0$ GeV/$c$ from central Au+Au collisions (0-5%) for $\sqrt{s_{NN}}=19.6$ GeV. The data are the measured balance functions corrected by subtracting balance functions calculated using mixed events. Also shown are balance functions calculated using shuffled events.

More…

Multiplicity and pseudorapidity distributions of charged particles and photons at forward pseudorapidity in Au + Au collisions at s(NN)**(1/2) = 62.4-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 73 (2006) 034906, 2006.
Inspire Record 697905 DOI 10.17182/hepdata.98930

We present the centrality dependent measurement of multiplicity and pseudorapidity distributions of charged particles and photons in Au + Au collisions at sqrt{s_NN} = 62.4 GeV. The charged particles and photons are measured in the pseudorapidity region 2.9 < eta < 3.9 and 2.3 < eta < 3.7, respectively. We have studied the scaling of particle production with the number of participating nucleons and the number of binary collisions. The photon and charged particle production in the measured pseudorapidity range has been shown to be consistent with energy independent limiting fragmentation behavior. The photons are observed to follow a centrality independent limiting fragmentation behavior while for the charged particles it is centrality dependent. We have carried out a comparative study of the pseudorapidity distributions of positively charged hadrons, negatively charged hadrons, photons, pions, net protons in nucleus--nucleus collisions and pseudorapidity distributions from p+p collisions. From these comparisons we conclude that baryons in the inclusive charged particle distribution are responsible for the observed centrality dependence of limiting fragmentation. The mesons are found to follow an energy independent behavior of limiting fragmentation while the behavior of baryons seems to be energy dependent.

11 data tables

(Color Online) Variation of $N_{ch}$ normalized to the number of participating nucleon pair in the FTPC coverage $(2.9 \leq \eta \leq 3.9)$ and $N_{\gamma}$ normalized to the number of participating nucleon pair in the PMD acceptance $(2.3 \leq \eta \leq 3.7)$ as a function of $N_{part}$. The lower band shows the uncertainty in the ratio due to uncertainties in $N_{part}$ calculations.

(Color Online) Variation of $N_{ch}$ normalized to the number of participating nucleon pair in the FTPC coverage $(2.9 \leq \eta \leq 3.9)$ and $N_{\gamma}$ normalized to the number of participating nucleon pair in the PMD acceptance $(2.3 \leq \eta \leq 3.7)$ as a function of $N_{part}$. The lower band shows the uncertainty in the ratio due to uncertainties in $N_{part}$ calculations.

(Color Online) Variation of $N_{ch}$ normalized to the number of collisions in the FTPC coverage $(2.9 \leq \eta \leq 3.9)$ and $N_{\gamma}$ normalized to number of collisions, in the PMD coverage $(2.3 \leq \eta \leq 3.7)$ as a function of $N_{coll}$. The lower band shows the uncertainty in the ratio due to uncertainties in $N_{coll}$ calculations.

More…

Mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles in PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 2.76 and 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 534, 2020.
Inspire Record 1759853 DOI 10.17182/hepdata.88289

Anisotropies in the initial energy density distribution of the quark-gluon plasma created in high energy heavy ion collisions lead to anisotropies in the azimuthal distributions of the final-state particles known as collective flow. Fourier harmonic decomposition is used to quantify these anisotropies. The higher-order harmonics can be induced by the same order anisotropies (linear response) or by the combined influence of several lower order anisotropies (nonlinear response) in the initial state. The mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles are measured as functions of transverse momentum and centrality in PbPb collisions at nucleon-nucleon center-of-mass energies $\sqrt{s_\mathrm{NN}} =$ 2.76 and 5.02 TeV with the CMS detector. The results are compared with viscous hydrodynamic calculations using several different initial conditions, as well as microscopic transport model calculations. None of the models provides a simultaneous description of the mixed higher-order flow harmonics and nonlinear response coefficients.

90 data tables

Mixed higher-order flow harmonic $v_4\{\Psi_{22}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.

Mixed higher-order flow harmonic $v_5\{\Psi_{23}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.

Mixed higher-order flow harmonic $v_6\{\Psi_{222}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.

More…

Collision Energy Dependence of Moments of Net-Kaon Multiplicity Distributions at RHIC

The STAR collaboration Adamczyk, L. ; Adams, J.R. ; Adkins, J.K. ; et al.
Phys.Lett.B 785 (2018) 551-560, 2018.
Inspire Record 1621460 DOI 10.17182/hepdata.98573

Fluctuations of conserved quantities such as baryon number, charge, and strangeness are sensitive to the correlation length of the hot and dense matter created in relativistic heavy-ion collisions and can be used to search for the QCD critical point. We report the first measurements of the moments of net-kaon multiplicity distributions in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV. The collision centrality and energy dependence of the mean ($M$), variance ($\sigma^2$), skewness ($S$), and kurtosis ($\kappa$) for net-kaon multiplicity distributions as well as the ratio $\sigma^2/M$ and the products $S\sigma$ and $\kappa\sigma^2$ are presented. Comparisons are made with Poisson and negative binomial baseline calculations as well as with UrQMD, a transport model (UrQMD) that does not include effects from the QCD critical point. Within current uncertainties, the net-kaon cumulant ratios appear to be monotonic as a function of collision energy.

43 data tables

Raw $\Delta N_k$ distributions in Au+Au collisions at 7.7 GeV for 0–5%, 30–40%, and 70–80% collision centralities at midrapidity. The distributions are not corrected for the finite centrality bin width effect nor the reconstruction efficiency.

Raw $\Delta N_k$ distributions in Au+Au collisions at 11.5 GeV for 0–5%, 30–40%, and 70–80% collision centralities at midrapidity. The distributions are not corrected for the finite centrality bin width effect nor the reconstruction efficiency.

Raw $\Delta N_k$ distributions in Au+Au collisions at 14.5 GeV for 0–5%, 30–40%, and 70–80% collision centralities at midrapidity. The distributions are not corrected for the finite centrality bin width effect nor the reconstruction efficiency.

More…

Proton-Proton Interactions and Onset of Deconfinement

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Anticic, T. ; et al.
Phys.Rev.C 102 (2020) 011901, 2020.
Inspire Record 1772241 DOI 10.17182/hepdata.95182

The NA61/SHINE experiment at the CERN SPS is performing a uniqe study of the phase diagram of strongly interacting matter by varying collision energy and nuclear mass number of colliding nuclei. In central Pb+Pb collisions the NA49 experiment found structures in the energy dependence of several observables in the CERN SPS energy range that had been predicted for the transition to a deconfined phase. New measurements of NA61/SHINE find intriguing similarities in p+p interactions for which no deconfinement transition is expected at SPS energies. Possible implications will be discussed.

12 data tables

K+/PI+ at y=0.

K+/PI+ at y=0.

<K+>/<PI+>.

More…

Harmonic decomposition of three-particle azimuthal correlations at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 98 (2018) 034918, 2018.
Inspire Record 1510300 DOI 10.17182/hepdata.96955

We present measurements of three-particle correlations for various harmonics in Au+Au collisions at energies ranging from $\sqrt{s_{{\rm NN}}}=7.7$ to 200 GeV using the STAR detector. The quantity $\langle\cos(m\phi_1+n\phi_2-(m+n)\phi_3)\rangle$ is evaluated as a function of $\sqrt{s_{{\rm NN}}}$, collision centrality, transverse momentum, $p_T$, pseudo-rapidity difference, $\Delta\eta$, and harmonics ($m$ and $n$). These data provide detailed information on global event properties like the three-dimensional structure of the initial overlap region, the expansion dynamics of the matter produced in the collisions, and the transport properties of the medium. A strong dependence on $\Delta\eta$ is observed for most harmonic combinations consistent with breaking of longitudinal boost invariance. Data reveal changes with energy in the two-particle correlation functions relative to the second-harmonic event-plane and provide ways to constrain models of heavy-ion collisions over a wide range of collision energies.

18 data tables

The centrality dependence of the C$_{m,n,m+n}$ correlations versus N$_{part}$ for charged hadrons with p$_{T}>0.2$ GeV/c and $\eta<1$ from 200 GeV Au+Au collisions.

The centrality dependence of the C$_{m,n,m+n}$ correlations versus N$_{part}$ for charged hadrons with p$_{T}>0.2$ GeV/c and $\eta<1$ from 62.4 GeV Au+Au collisions.

The centrality dependence of the C$_{m,n,m+n}$ correlations versus N$_{part}$ for charged hadrons with p$_{T}>0.2$ GeV/c and $\eta<1$ from 39 GeV Au+Au collisions.

More…

Transverse energy production and charged-particle multiplicity at midrapidity in various systems from $\sqrt{s_{NN}}=7.7$ to 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 024901, 2016.
Inspire Record 1394433 DOI 10.17182/hepdata.96601

Measurements of midrapidity charged particle multiplicity distributions, $dN_{\rm ch}/d\eta$, and midrapidity transverse-energy distributions, $dE_T/d\eta$, are presented for a variety of collision systems and energies. Included are distributions for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ and 62.4 GeV, Cu$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, U$+$U collisions at $\sqrt{s_{_{NN}}}=193$ GeV, $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, $N_{\rm part}$, and the number of constituent quark participants, $N_{q{\rm p}}$. For all $A$$+$$A$ collisions down to $\sqrt{s_{_{NN}}}=7.7$ GeV, it is observed that the midrapidity data are better described by scaling with $N_{q{\rm p}}$ than scaling with $N_{\rm part}$. Also presented are estimates of the Bjorken energy density, $\varepsilon_{\rm BJ}$, and the ratio of $dE_T/d\eta$ to $dN_{\rm ch}/d\eta$, the latter of which is seen to be constant as a function of centrality for all systems.

28 data tables

Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

Multiplicity in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV

More…

Bulk Properties of the Medium Produced in Relativistic Heavy-Ion Collisions from the Beam Energy Scan Program

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 96 (2017) 044904, 2017.
Inspire Record 1510593 DOI 10.17182/hepdata.76977

We present measurements of bulk properties of the matter produced in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 19.6, 27, and 39 GeV using identified hadrons ($\pi^\pm$, $K^\pm$, $p$ and $\bar{p}$) from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC). Midrapidity ($|y|<$0.1) results for multiplicity densities $dN/dy$, average transverse momenta $\langle p_T \rangle$ and particle ratios are presented. The chemical and kinetic freeze-out dynamics at these energies are discussed and presented as a function of collision centrality and energy. These results constitute the systematic measurements of bulk properties of matter formed in heavy-ion collisions over a broad range of energy (or baryon chemical potential) at RHIC.

106 data tables

The average number of participating nucleons (⟨Npart⟩) for various collision centralities in Au+Au collisions at √sNN = 7.7–39 GeV.

Midrapidity (|y| < 0.1) transverse momentum spectra for (b) π- in Au+Au collisions at √sNN = 7.7 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.

Midrapidity (|y| < 0.1) transverse momentum spectra for (a) π+ in Au+Au collisions at √sNN = 7.7 GeV for different centralities. The spectra for centralities other than 0–5% are scaled for clarity as shown in the figure. The curves represent the Bose-Einstein, mT -exponential, and double-exponential function fits to 0–5% central data for pions, kaons, and (anti)protons, respectively. The uncertainties are statistical and systematic added in quadrature.

More…

Identified particle production, azimuthal anisotropy, and interferometry measurements in Au+Au collisions at $\sqrt{s_{NN}}$ = 9.2 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 81 (2010) 024911, 2010.
Inspire Record 831944 DOI 10.17182/hepdata.93265

We present the first measurements of identified hadron production, azimuthal anisotropy, and pion interferometry from Au+Au collisions below the nominal injection energy at the Relativistic Heavy-Ion Collider (RHIC) facility. The data were collected using the large acceptance STAR detector at $\sqrt{s_{NN}}$ = 9.2 GeV from a test run of the collider in the year 2008. Midrapidity results on multiplicity density (dN/dy) in rapidity (y), average transverse momentum (<pT>), particle ratios, elliptic flow, and HBT radii are consistent with the corresponding results at similar $\sqrt{s_{NN}}$ from fixed target experiments. Directed flow measurements are presented for both midrapidity and forward rapidity regions. Furthermore the collision centrality dependence of identified particle dN/dy, <pT>, and particle ratios are discussed. These results also demonstrate the readiness of the STAR detector to undertake the proposed QCD critical point search and the exploration of the QCD phase diagram at RHIC.

27 data tables

Second order event plane resolution measured in the TPC as a function of collision centrality for.

Efficiency × acceptance for reconstructed pions, kaons, and protons in the TPC as a function of p_T at midrapidity.

Percentage of pion background contribution estimated from HIJING+GEANT as a function of p_T at midrapidity.

More…

Measurement of $\phi $ meson production in $p + p$ interactions at 40, 80 and $158 \, \hbox {GeV}/c$ with the NA61/SHINE spectrometer at the CERN SPS

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Antićić, T. ; et al.
Eur.Phys.J.C 80 (2020) 199, 2020.
Inspire Record 1749613 DOI 10.17182/hepdata.93228

Results on $\phi$ meson production in inelastic p+p collisions at CERN SPS energies are presented. They are derived from data collected by the NA61/SHINE fixed target experiment, by means of invariant mass spectra fits in the $\phi \to K^+K^-$ decay channel. They include the first ever measured double differential spectra of $\phi$ mesons as a function of rapidity $y$ and transverse momentum $p_T$ for proton beam momenta of 80 GeV/c and 158 GeV/c, as well as single differential spectra of $y$ or $p_T$ for beam momentum of 40 GeV/c. The corresponding total $\phi$ yields per inelastic p+p event are obtained. These results are compared with existing data on $\phi$ meson production in p+p collisions. The comparison shows consistency but superior accuracy of the present measurements. The emission of $\phi$ mesons in p+p reactions is confronted with that occurring in Pb+Pb collisions, and the experimental results are compared with model predictions. It appears that none of the considered models can properly describe all the experimental observables.

17 data tables

Double differential multiplicity of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 158 GeV/c, as a function of transverse momentum $p_T$ and rapidity $y$.

Double differential multiplicity of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 80 GeV/c, as a function of transverse momentum $p_T$ and rapidity $y$.

Transverse momentum $p_T$ spectrum of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 40 GeV/c, in a broad rapidity $y$ bin of (0, 1.5).

More…

Production of deuterium, tritium, and $^3$He in central Pb+Pb collisions at 20A, 30A, 40A, 80A, and 158A GeV at the CERN SPS

The NA49 collaboration Anticic, T. ; Baatar, B. ; Bartke, J. ; et al.
Phys.Rev.C 94 (2016) 044906, 2016.
Inspire Record 1469272 DOI 10.17182/hepdata.88359

Production of $d$, $t$, and $^3$He nuclei in central Pb+Pb interactions was studied at five collision energies ($\sqrt{s_{NN}}=$ 6.3, 7.6, 8.8, 12.3, and 17.3 GeV) with the NA49 detector at the CERN SPS. Transverse momentum spectra, rapidity distributions, and particle ratios were measured. Yields are compared to predictions of statistical models. Phase-space distributions of light nuclei are discussed and compared to those of protons in the context of a coalescence approach. The coalescence parameters $B_2$ and $B_3$, as well as coalescence radii for $d$ and $^3$He were determined as a function of transverse mass at all energies.

103 data tables

Numerical data for the transverse momentum spectra of helium-3 in rapidity interval

Numerical data for the transverse momentum spectra of helium-3 in rapidity interval

Numerical data for the transverse momentum spectra of helium-3 in rapidity interval

More…

Version 2
Multiplicity and transverse momentum fluctuations in inelastic proton-proton interactions at the CERN Super Proton Synchrotron

The NA61/SHINE collaboration Aduszkiewicz, A. ; Ali, Y. ; Andronov, E. ; et al.
Eur.Phys.J.C 76 (2016) 635, 2016.
Inspire Record 1395611 DOI 10.17182/hepdata.76900

Measurements of multiplicity and transverse momentum fluctuations of charged particles were performed in inelastic p+p interactions at 20, 31, 40, 80 and 158 GeV/c beam momentum. Results for the scaled variance of the multiplicity distribution and for three strongly intensive measures of multiplicity and transverse momentum fluctuations \$\Delta[P_{T},N]\$, \$\Sigma[P_{T},N]\$ and \$\Phi_{p_T}\$ are presented. For the first time the results on fluctuations are fully corrected for experimental biases. The results on multiplicity and transverse momentum fluctuations significantly deviate from expectations for the independent particle production. They also depend on charges of selected hadrons. The string-resonance Monte Carlo models EPOS and UrQMD do not describe the data. The scaled variance of multiplicity fluctuations is significantly higher in inelastic p+p interactions than in central Pb+Pb collisions measured by NA49 at the same energy per nucleon. This is in qualitative disagreement with the predictions of the Wounded Nucleon Model. Within the statistical framework the enhanced multiplicity fluctuations in inelastic p+p interactions can be interpreted as due to event-by-event fluctuations of the fireball energy and/or volume.

14 data tables

Energy dependence of $\Delta[P_{T},N]$ for three charge selections

Energy dependence of $\Delta[P_{T},N]$ for three charge selections

Energy dependence of $\Sigma[P_{T},N]$ for three chrge selections

More…

Two-particle correlations in azimuthal angle and pseudorapidity in inelastic p+p interactions at the CERN Super Proton Synchrotron

The NA61/SHINE collaboration Aduszkiewicz, A. ; Ali, Y. ; Andronov, E. ; et al.
Eur.Phys.J.C 77 (2017) 59, 2017.
Inspire Record 1489238 DOI 10.17182/hepdata.76899

Results on two-particle $\Delta\eta\Delta\phi$ correlations in inelastic p+p interactions at 20, 31, 40, 80, and 158~GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. The results are compared with the EPOS and UrQMD models.

20 data tables

Two-particle correlation function C(Delta eta, Delta phi) for all charge pairs in inelastic p+p interactions at 20 GeV/c.

Two-particle correlation function C(Delta eta, Delta phi) for all charge pairs in inelastic p+p interactions at 31 GeV/c.

Two-particle correlation function C(Delta eta, Delta phi) for all charge pairs in inelastic p+p interactions at 40 GeV/c.

More…

Measurements of $\pi^\pm$, K$^\pm$, p and $\bar{\textrm{p}}$ spectra in proton-proton interactions at 20, 31, 40, 80 and 158 GeV/c with the NA61/SHINE spectrometer at the CERN SPS

The NA61/SHINE collaboration Aduszkiewicz, A. ; Ali, Y. ; Andronov, E. ; et al.
Eur.Phys.J.C 77 (2017) 671, 2017.
Inspire Record 1598505 DOI 10.17182/hepdata.79533

Measurements of inclusive spectra and mean multiplicities of $\pi^\pm$, K$^\pm$, p and $\bar{\textrm{p}}$ produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c ($\sqrt{s} = $ 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively) were performed at the CERN Super Proton Synchrotron using the large acceptance NA61/SHINE hadron spectrometer. Spectra are presented as function of rapidity and transverse momentum and are compared to predictions of current models. The measurements serve as the baseline in the NA61/SHINE study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter.

116 data tables

Transverse momentum-rapidity spectrum of K− produced in inelastic p+p interactions at 31 GeV/c with statistical uncertainties.

Transverse momentum-rapidity spectrum of K− produced in inelastic p+p interactions at 20 GeV/c with systematic uncertainties.

Transverse momentum-rapidity spectrum of K+ produced in inelastic p+p interactions at 20 GeV/c with statistical uncertainties.

More…

Study of the $e^+e^-\to K^+K^-$ reaction in the energy range from 2.6 to 8.0 GeV

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 92 (2015) 072008, 2015.
Inspire Record 1383130 DOI 10.17182/hepdata.73784

The $e^+e^-\to K^+K^-$ cross section and charged-kaon electromagnetic form factor are measured in the $e^+e^-$ center-of-mass energy range ($E$) from 2.6 to 8.0 GeV using the initial-state radiation technique with an undetected photon. The study is performed using 469 fb$^{-1}$ of data collected with the BABAR detector at the PEP-II $e^+e^-$ collider at center-of-mass energies near 10.6 GeV. The form factor is found to decrease with energy faster than $1/E^2$, and approaches the asymptotic QCD prediction. Production of the $K^+K^-$ final state through the $J/\psi$ and $\psi(2S)$ intermediate states is observed. The results for the kaon form factor are used together with data from other experiments to perform a model-independent determination of the relative phases between single-photon and strong amplitudes in $J/\psi$ and $\psi(2S)\to K^+K^-$ decays. The values of the branching fractions measured in the reaction $e^+e^- \to K^+K^-$ are shifted relative to their true values due to interference between resonant and nonresonant amplitudes. The values of these shifts are determined to be about $\pm5\%$ for the $J/\psi$ meson and $\pm15\%$ for the $\psi(2S)$ meson.

1 data table

The $K^+K^-$ invariant-mass interval ($M_{K^+K^-}$), number of selected events ($N_{\rm sig}$) after background subtraction, detection efficiency ($\varepsilon$), ISR luminosity ($L$), measured $e^+e^-\to K^+K^-$ cross section ($\sigma_{K^+K^-}$), and the charged-kaon form factor ($|F_K|$). For the number of events and cross section. For the form factor, we quote the combined uncertainty. For the mass interval 7.5 - 8.0 GeV/$c^2$, the 90$\%$ CL upper limits for the cross section and form factor are listed.


Measurement of $e^+e^- \to \gamma\chi_{cJ}$ via initial state radiation at Belle

The Belle collaboration Han, Y.L. ; Wang, X.L. ; Yuan, C.Z. ; et al.
Phys.Rev.D 92 (2015) 012011, 2015.
Inspire Record 1376480 DOI 10.17182/hepdata.73745

The process $e^+e^- \to \gamma\chi_{cJ}$ ($J$=1, 2) is studied via initial state radiation using 980 fb$^{-1}$ of data at and around the $\Upsilon(nS)$ ($n$=1, 2, 3, 4, 5) resonances collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider. No significant signal is observed except from $\psi(2S)$ decays. Upper limits on the cross sections between $\sqrt{s}=3.80$ and $5.56~{\rm GeV}$ are determined at the 90% credibility level, which range from few pb to a few tens of pb. We also set upper limits on the decay rate of the vector charmonium [$\psi(4040$), $\psi(4160)$, and $\psi(4415)$] and charmoniumlike [$Y(4260)$, $Y(4360)$, and $Y(4660)$] states to $\gamma\chi_{cJ}$.

3 data tables

Upper limits on the $e^+e^-\to \gamma\chi_{cJ}$ cross sections.

Upper limits on $\Gamma_{ee} \times \mathcal{B}$ at the 90$\%$ C.L.

Upper limits on branching fractions $\mathcal{B}(R \to \gamma \chi_{cJ})$ at the 90$\%$ C.L.


Charged particle multiplicities in nuclear collisions at 200-GeV/N

The NA35 collaboration Bächler, J. ; Bartke, J. ; Bialkowska, H. ; et al.
Z.Phys.C 51 (1991) 157-162, 1991.
Inspire Record 320907 DOI 10.17182/hepdata.14983

Data on multiplicities of charged particles produced in proton-nucleus and nucleus-nucleus collisions at 200 GeV per nucleon are presented. It is shown that the mean multiplicity of negative particles is proportional to the mean number of nucleons participating in the collision both for nucleus-nucleus and proton-nucleus collisions. The apparent consistency of pion multiplicity data with the assumption of an incoherent superposition of nucleon-nucleon collisions is critically discussed.

4 data tables

No description provided.

No description provided.

No description provided.

More…

LAMBDA (1520) PRODUCTION IN NEUTRON - NUCLEON INTERACTIONS AT approximately 40-GeV NEUTRON ENERGY

Krastev, V.R. ; Aleev, A.N. ; Arefev, V.A. ; et al.
JINR-P1-88-31, 1988.
Inspire Record 261871 DOI 10.17182/hepdata.9450

None

6 data tables

AVERAGE OVER ALL TARGETS.

No description provided.

No description provided.

More…

Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 113 (2014) 052302, 2014.
Inspire Record 1288917 DOI 10.17182/hepdata.73457

Local parity-odd domains are theorized to form inside a Quark-Gluon-Plasma (QGP) which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect (CME). The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this paper, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy, and tends to vanish by 7.7 GeV. The implications of these results for the CME will be discussed.

15 data tables

The three-point correlator, $\gamma$, as a function of centrality for Au+Au collisions at 62.4 GeV.

The three-point correlator, $\gamma$, as a function of centrality for Au+Au collisions at 39 GeV.

The three-point correlator, $\gamma$, as a function of centrality for Au+Au collisions at 27 GeV.

More…

Energy Dependence of Moments of Net-proton Multiplicity Distributions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 112 (2014) 032302, 2014.
Inspire Record 1255072 DOI 10.17182/hepdata.73343

We report the beam energy (\sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (\sigma), skewness (S), and kurtosis (\kappa) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| < 0.5) and within the transverse momentum range 0.4 < pT < 0.8 GeV/c in the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding the Quantum Chromodynamic (QCD) phase diagram. The products of the moments, S\sigma and \kappa\sigma^{2}, are sensitive to the correlation length of the hot and dense medium created in the collisions and are related to the ratios of baryon number susceptibilities of corresponding orders. The products of moments are found to have values significantly below the Skellam expectation and close to expectations based on independent proton and anti-proton production. The measurements are compared to a transport model calculation to understand the effect of acceptance and baryon number conservation, and also to a hadron resonance gas model.

46 data tables

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=7.7$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=11.5$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=19.6$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

More…

Comparison of Strange Anti-baryon and Strange Meson Production in $K^+ p$ Interactions at 32-{GeV}/$c$

Chliapnikov, P.V. ; Gerdyukov, L.N. ; Khromova, G.N. ; et al.
Z.Phys.C 12 (1982) 99, 1982.
Inspire Record 167341 DOI 10.17182/hepdata.10880

New experimental results are presented on inclusive production properties of\(\bar \Sigma ^{ *+ } \)(1385) and\(\bar \Sigma ^{ *+ } \)(1385) inK+p interactions at 32 GeV/c. The analysis is based on significantly larger statistics than previously available. A comparison is also made of invariantx-distributions ofK0/\(\bar K^0 \),\(\bar \Lambda \) and\(\bar \Xi ^ +\) and of\(\bar \Sigma ^{ *\pm } \)(1385) andK*+(892). These spectra exhibit regularities expected from the quark-recombination picture when it is assumed that the strange mesons and antibaryons are produced off the strange\(\bar s\)-valence-quark in the incidentK+ meson. Transverse momentum distributions are also presented forK*+(892) and\(\bar \Sigma ^{ *\pm } \)(1385) and found to be very similar. The results on strange antibaryon average multiplicities disagree strongly with a recent version of the additive quark model.

32 data tables

No description provided.

No description provided.

No description provided.

More…

Study of the reaction k+ p ---> k*0(890) delta++ from 4.6-16.0 gev/c

Ciapetti, G. ; Eisner, R.L. ; Irving, A.C. ; et al.
Nucl.Phys.B 64 (1973) 58-108, 1973.
Inspire Record 94946 DOI 10.17182/hepdata.6741

A systematic analysis is presented on the reaction K + p → K ∗0 (890) Δ ++ for nine incident momenta between 4.6–16.0 GeV/ c . Cross sections, differential cross sections and vector meson single density matrix elements are given. As a function of energy, little if any change is observed in either the shapes of the differential cross sections or in the values of the density matrix elements. The data are interpreted in terms of current ideas on t -channel exchange mechanisms.

20 data tables

No description provided.

No description provided.

No description provided.

More…

Study of the Inclusive Reaction $K^+ p \to \Delta^{++}$ (1236) X0 at 32-{GeV}/$c$

The French-Soviet & CERN-Soviet collaborations Chliapnikov, P.V. ; Gorbunov, P.A. ; Klimenko, S.V. ; et al.
Nucl.Phys.B 164 (1980) 189-213, 1980.
Inspire Record 141735 DOI 10.17182/hepdata.8244

Inclusive production of Δ ++ (1232) with >| t p, Δ ++>|<0.6 (GeV/ c ) 2 is studied in 32 GeV/ c K + p interactions. A systematic comparison with the reaction K + p→pX for >| t p,p>| < 0.6 (GeV/ c ) 2 is made. The production properties of the Δ ++ (1232), of associated π + , π − and K 0 production and of the recoiling system X 0 are investigated in detail. The polarization of the Δ ++ and the energy dependence of the total K + π − cross sections, determined by a Chew-Low extrapolation, are presented and discussed.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of $e^+e^- \to \pi^+\pi^-\psi(2S)$ via Initial State Radiation at Belle

The Belle collaboration Wang, X.L. ; Yuan, C.Z. ; Shen, C.P. ; et al.
Phys.Rev.D 91 (2015) 112007, 2015.
Inspire Record 1324785 DOI 10.17182/hepdata.71501

We report measurement of the cross section of $e^+e^-\to \pi^+\pi^-\psi(2S)$ between 4.0 and $5.5 {\rm GeV}$, based on an analysis of initial state radiation events in a $980 \rm fb^{-1}$ data sample recorded with the Belle detector. The properties of the $Y(4360)$ and $Y(4660)$ states are determined. Fitting the mass spectrum of $\pi^+\pi^-\psi(2S)$ with two coherent Breit-Wigner functions, we find two solutions with identical mass and width but different couplings to electron-positron pairs: $M_{Y(4360)} = (4347\pm 6\pm 3) {\rm MeV}/c^2$, $\Gamma_{Y(4360)} = (103\pm 9\pm 5) {\rm MeV}$, $M_{Y(4660)} = (4652\pm10\pm 8) {\rm MeV}/c^2$, $\Gamma_{Y(4660)} = (68\pm 11\pm 1) \rm MeV$; and ${\cal{B}}[Y(4360)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4360)}^{e^+e^-} = (10.9\pm 0.6\pm 0.7) \rm eV$ and ${\cal{B}}[Y(4660)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4660)}^{e^+e^-} = (8.1\pm 1.1\pm 0.5) \rm eV$ for one solution; or ${\cal{B}}[Y(4360)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4360)}^{e^+e^-} = (9.2\pm 0.6\pm 0.6) \rm eV$ and ${\cal{B}}[Y(4660)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4660)}^{e^+e^-} = (2.0\pm 0.3\pm 0.2) \rm eV$ for the other. Here, the first errors are statistical and the second systematic. Evidence for a charged charmoniumlike structure at $4.05 {\rm GeV}/c^2$ is observed in the $\pi^{\pm}\psi(2S)$ intermediate state in the $Y(4360)$ decays.

1 data table

Measured $e^+e^- \to \pi^+\pi^-\psi(2S)$ cross section for center of mass energy ($E_{\rm cm}$) from 4.0 GeV/$c^2$ to 5.5 GeV/$c^2$. The errors are the sums of statistical errors of signal and background events and the systematic errors.


Inclusive J/psi production in pp collisions at sqrt(s) = 2.76 TeV

The ALICE collaboration Abelev, B. ; Adam, J. ; Adamova, D. ; et al.
Phys.Lett.B 718 (2012) 295-306, 2012.
Inspire Record 1094079 DOI 10.17182/hepdata.62231

The ALICE Collaboration has measured inclusive J/psi production in pp collisions at a center of mass energy sqrt(s)=2.76 TeV at the LHC. The results presented in this Letter refer to the rapidity ranges |y|<0.9 and 2.5<y<4 and have been obtained by measuring the electron and muon pair decay channels, respectively. The integrated luminosities for the two channels are L^e_int=1.1 nb^-1 and L^mu_int=19.9 nb^-1, and the corresponding signal statistics are N_J/psi^e+e-=59 +/- 14 and N_J/psi^mu+mu-=1364 +/- 53. We present dsigma_J/psi/dy for the two rapidity regions under study and, for the forward-y range, d^2sigma_J/psi/dydp_t in the transverse momentum domain 0<p_t<8 GeV/c. The results are compared with previously published results at sqrt(s)=7 TeV and with theoretical calculations.

4 data tables

Double differential J/$\psi$ production cross section at $\sqrt{s}=2.76$ TeV. The first uncertainty is statistical, the second one is $p_{\rm T}$-coorelated, the third one is uncorrelated. Polarization-related uncertainties are not included.

The $\sqrt{s}$-dependence of $\langle p_{\rm T}\rangle$ for inclusive J/$\psi$ production (forward rapidity).

the $\sqrt{s}$-dependence of $\langle p_{\rm T}\rangle$ for inclusive J/$\psi$ production (forward rapidity).

More…

Energy Dependence of $K/\pi$, $p/\pi$, and $K/p$ Fluctuations in Au+Au Collisions from $\rm \sqrt{s_{NN}}$ = 7.7 to 200 GeV

The STAR collaboration Abdelwahab, N.M. ; Adamczyk, L. ; Adkins, J.K. ; et al.
Phys.Rev.C 92 (2015) 021901, 2015.
Inspire Record 1322965 DOI 10.17182/hepdata.72254

A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy-ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical $K\pi$, $p\pi$, and $Kp$ fluctuations as measured by the STAR experiment in central 0-5\% Au+Au collisions from center-of-mass collision energies $\rm \sqrt{s_{NN}}$ = 7.7 to 200 GeV are presented. The observable $\rm \nu_{dyn}$ was used to quantify the magnitude of the dynamical fluctuations in event-by-event measurements of the $K\pi$, $p\pi$, and $Kp$ pairs. The energy dependences of these fluctuations from central 0-5\% Au+Au collisions all demonstrate a smooth evolution with collision energy.

1 data table

$p\pi$, Kp, and $K\pi$ fluctuations as a function of collision energy, expressed as $v_{dyn,p\pi}$, $v_{dyn,Kp}$, and $v_{dyn,K\pi}$ respectively. Shown are data from central (0-5%) Au+Au collisions at energies from $\sqrt{s_{\rm NN}}$ = 7.7 to 200 GeV from the STAR experiment.


Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 114 (2015) 252302, 2015.
Inspire Record 1358666 DOI 10.17182/hepdata.72237

We present measurements of $\pi^-$ and $\pi^+$ elliptic flow, $v_2$, at midrapidity in Au+Au collisions at $\sqrt{s_{_{\rm NN}}} =$ 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry, $A_{ch}$, based on data from the STAR experiment at RHIC. We find that $\pi^-$ ($\pi^+$) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at $\sqrt{s_{_{\rm NN}}} = \text{27 GeV}$ and higher. At $\sqrt{s_{_{\rm NN}}} = \text{200 GeV}$, the slope of the difference of $v_2$ between $\pi^-$ and $\pi^+$ as a function of $A_{ch}$ exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.

10 data tables

The distribution of observed charge asymmetry from STAR data.

Pion $v_2${2} as a function of observed charge asymmetry.

$v_2$ difference between $\pi^-$ and $\pi^+$ as a function of charge asymmetry with the tracking efficiency correction, for 30-40% central Au+Au collisions at 200 GeV. The errors are statistical only.

More…

Probing Parton Dynamics of QCD Matter with $\Omega$ and $\phi$ Production

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 93 (2016) 021903, 2016.
Inspire Record 1378002 DOI 10.17182/hepdata.72068

We present measurements of $\Omega$ and $\phi$ production at mid-rapidity from Au+Au collisions at nucleon-nucleon center-of-mass energies $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27 and 39 GeV by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). Motivated by the coalescence formation mechanism for these strange hadrons, we study the ratios of $N(\Omega^{-}+\Omega^{+})/(2N(\phi))$. These ratios as a function of transverse momentum ($p_T$) fall on a consistent trend at high collision energies, but start to show deviations in peripheral collisions at $\sqrt{s_{NN}}$ = 19.6, 27 and 39 GeV, and in central collisions at 11.5 GeV in the intermediate $p_T$ region of 2.4-3.6 GeV/c. We further evaluate empirically the strange quark $p_T$ distributions at hadronization by studying the $\Omega/\phi$ ratios scaled by the number of constituent quarks. The NCQ-scaled $\Omega/\phi$ ratios show a suppression of strange quark production in central collisions at 11.5 GeV compared to $\sqrt{s_{NN}} >= 19.6$ GeV. The shapes of the presumably thermal strange quark distributions in 0-60% most central collisions at 7.7 GeV show significant deviations from those in 0-10% most central collisions at higher energies. These features suggest that there is likely a change of the underlying strange quark dynamics in the transition from quark-matter to hadronic matter at collision energies below 19.6 GeV.

85 data tables

Phi Meson Spectra.

Phi Meson Spectra.

Phi Meson Spectra.

More…

Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au+Au Collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 116 (2016) 112302, 2016.
Inspire Record 1414638 DOI 10.17182/hepdata.72069

We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from $\sqrt{s_{NN}}=7.7$ GeV to 200 GeV. The third harmonic $v_3^2\{2\}=\langle \cos3(\phi_1-\phi_2)\rangle$, where $\phi_1-\phi_2$ is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs $\Delta\eta = \eta_1-\eta_2$. Non-zero {\vthree} is directly related to the previously observed large-$\Delta\eta$ narrow-$\Delta\phi$ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity Quark Gluon Plasma (QGP) phase. For sufficiently central collisions, $v_3^2\{2\}$ persist down to an energy of 7.7 GeV suggesting that QGP may be created even in these low energy collisions. In peripheral collisions at these low energies however, $v_3^2\{2\}$ is consistent with zero. When scaled by pseudorapidity density of charged particle multiplicity per participating nucleon pair, $v_3^2\{2\}$ for central collisions shows a minimum near {\snn}$=20$ GeV.

81 data tables

Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.

Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.

Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.

More…

Study of Inclusive Production of Boson Resonances in $\bar{p} p$ Interactions at 32-{GeV}/$c$

The French-Soviet & CERN-Soviet collaborations Starchenko, E.A. ; Chekulaev, S.V. ; Galyaev, N.A. ; et al.
Z.Phys.C 16 (1983) 181, 1983.
Inspire Record 168177 DOI 10.17182/hepdata.22268

The inclusive production ofK*±(890), ρρ(770), ω0(780) andf0(1,270) mesons is studied in\(\bar pp\) experiment at 32GeV/c in the MIRABELLE bubble chamber by the analysis of (K0π±) and (π+π−) invariant mass distributions. The inclusive cross sections are σ(K*±)=2.45±0.30 mb, σ(ρ0)=8.8 ±0.9 mb, σ(ω+)≃6.2 mb, and σ(f0)=2.2±0.7 mb. The C.M. longitudinal distribution of theK*±(890) is slightly shifted to the primary particles fragmentation regions; the ρ0 is produced more centrally. The studied mesons alone are responsible for 40% of final state poins. The production features of various resonances are compared with quark models predictions.

13 data tables

No description provided.

No description provided.

No description provided.

More…

DIFFRACTION DISSOCIATION OF ANTI-PROTONS IN anti-p p COLLISIONS AT 22.4-GeV/c

The Dubna-Alma Ata-Yerevan-Helsinki-Moscow-Prague-Tbilisi collaboration Batyunya, B.V. ; Boguslavsky, I.V. ; Gramenitsky, I.M. ; et al.
Sov.J.Nucl.Phys. 37 (1983) 58, 1983.
Inspire Record 178090 DOI 10.17182/hepdata.71073

None

11 data tables

No description provided.

No description provided.

No description provided.

More…

COMPARISON OF SOME INCLUSIVE CHARACTERISTICS OF anti-p p INTERACTIONS AT 22.4-GeV/c MOMENTUM WITH THE PREDICTIONS OF THE QUARK - PARTON MODEL

Batyunya, B.V. ; Boguslavsky, I.V. ; Gramenitsky, I.M. ; et al.
Z.Phys.C 5 (1980) 17-26, 1980.
Inspire Record 144655 DOI 10.17182/hepdata.71257

None

7 data tables

No description provided.

DATA FOR EVNENT WITHOUT PAIRS FROM INTERFIERENCE REGION - YF 27, 1556.

No description provided.

More…

Inclusive phi Production in pi- p Interactions at 16-GeV/c

The Bari-Bonn-CERN-Daresbury-Glasgow-Liverpool-Milan-Vienna collaboration Ghidini, B. ; Navach, F. ; Palano, A. ; et al.
Phys.Lett.B 68 (1977) 186, 1977.
Inspire Record 119248 DOI 10.17182/hepdata.48929

Inclusive φ production is studied in π − p collisions at 16 GeV/ c . The φ cross section for Feynman variable x φ > 0.2 is found to be (15.5 ± 3.6) μb. This leads to an extrapolated cross section of (29.9 ± 7.0) μb for x φ > 0.0. Fitting the momentum transfer squared distribution of the φ to the form e −bp 2 T gives an average slope of b = (2.4 ± 0.3) (GeV/ c −2 for x φ > 0.5.

4 data tables

No description provided.

No description provided.

DATA OBTAINED FROM FIGURE BY A.A. LEBEDEV.

More…

Search for the production of dark matter in association with top-quark pairs in the single-lepton final state in proton-proton collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 06 (2015) 121, 2015.
Inspire Record 1359293 DOI 10.17182/hepdata.70231

A search is presented for particle dark matter produced in association with a pair of top quarks in pp collisions at a centre-of-mass energy of sqrt(s) = 8 TeV. The data were collected with the CMS detector at the LHC and correspond to an integrated luminosity of 19.7 inverse femtobarns. This search requires the presence of one lepton, multiple jets, and large missing transverse energy. No excess of events is found above the SM expectation, and upper limits are derived on the production cross section. Interpreting the findings in the context of a scalar contact interaction between fermionic dark matter particles and top quarks, lower limits on the interaction scale are set. These limits are also interpreted in terms of the dark matter-nucleon scattering cross sections for the spin-independent scalar operator and they complement direct searches for dark matter particles in the low mass region.

4 data tables

Systematic uncertainties from various sources and their impact on the total background prediction.

Expected number of background events in the SR, expected number of signal events for a DM particle with the mass $M_{\chi}$ = 1 GeV, assuming an interaction scale $M_{*}$ = 100 GeV, and observed data. The statistical and systematic uncertainties are given on the expected yields.

Expected number of signal events in SR assuming an interaction scale $M_{*}$ = 100 GeV, signal efficiencies, and observed and expected limits at 90% CL on production cross sections for $\mathrm{pp \rightarrow t\bar{t} + \chi\bar{\chi}}$, for various DM particle masses.

More…