A measurement is presented of differential cross sections for $t$-channel single top quark and antiquark production in proton-proton collisions at a centre-of-mass energy of 13 TeV by the CMS experiment at the LHC. From a data set corresponding to an integrated luminosity of 35.9 fb$^{-1}$, events containing one muon or electron and two or three jets are analysed. The cross section is measured as a function of the top quark transverse momentum ($p_\mathrm{T}$), rapidity, and polarisation angle, the charged lepton $p_\mathrm{T}$ and rapidity, and the $p_\mathrm{T}$ of the W boson from the top quark decay. In addition, the charge ratio is measured differentially as a function of the top quark, charged lepton, and W boson kinematic observables. The results are found to be in agreement with standard model predictions using various next-to-leading-order event generators and sets of parton distribution functions. Additionally, the spin asymmetry, sensitive to the top quark polarisation, is determined from the differential distribution of the polarisation angle at parton level to be 0.440 $\pm$ 0.070, in agreement with the standard model prediction.
Differential absolute cross section as a function of the parton-level top quark $p_\textrm{T}$
Covariance of the differential absolute cross section as a function of the parton-level top quark $p_\textrm{T}$
Differential absolute cross section as a function of the parton-level top quark rapidity
The inclusive cross-section for jet production in association with a Z boson decaying into an electron-positron pair is measured as a function of the transverse momentum and the absolute rapidity of jets using 19.9 fb$^{-1}$ of $\sqrt s = 8$ TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. The measured Z + jets cross-section is unfolded to the particle level. The cross-section is compared with state-of-the-art Standard Model calculations, including the next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations, corrected for non-perturbative and QED radiation effects. The results of the measurements cover final-state jets with transverse momenta up to 1 TeV, and show good agreement with fixed-order calculations.
List of experimentally considered systematic uncertainties for the Z + jets cross-section measurement
The double-differential Z + jets production cross-section as a function of |y_{jet}| in the 25 GeV < p_{T}^{jet} < 50 GeV range. The particle level phase space definition: - 66 GeV < m_{ee} < 116 GeV - |eta_{electron}| < 2.47 - p_{T}^{electron} > 20 GeV - anti-kt R=0.4 jets N>=1 - |y_{jet}| < 3.4 - p_{T}^{jet} > 25 GeV - Delta R(jet, electron) > 0.4
The double-differential Z + jets production cross-section as a function of |y_{jet}| in the 50 GeV < p_{T}^{jet} < 100 GeV range. The particle level phase space definition: - 66 GeV < m_{ee} < 116 GeV - |eta_{electron}| < 2.47 - p_{T}^{electron} > 20 GeV - anti-kt R=0.4 jets N>=1 - |y_{jet}| < 3.4 - p_{T}^{jet} > 25 GeV - Delta R(jet, electron) > 0.4
This Letter presents direct searches for lepton flavour violation in Higgs boson decays, $H\rightarrow e\tau$ and $H\rightarrow\mu\tau$, performed with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of $36.1\,\mathrm{fb}^{-1}$. No significant excess is observed above the expected background from Standard Model processes. The observed (median expected) 95 % confidence-level upper limits on the lepton-flavour-violating branching ratios are $0.47\%$ ($0.34^{+0.13}_{-0.10}\,\%$) and $0.28\%$ ($0.37^{+0.14}_{-0.10}\,\%$) for $H\to e\tau$ and $H\to\mu\tau$, respectively.
95% CL upper limits on the branching ratio H --> e tau.
95% CL upper limits on the branching ratio H --> mu tau.
To assess the properties of the quark-gluon plasma formed in heavy-ion collisions, the ATLAS experiment at the LHC measures a correlation between the mean transverse momentum and the magnitudes of the flow harmonics. The analysis uses data samples of lead-lead and proton-lead collisions obtained at the centre-of-mass energy per nucleon pair of 5.02 TeV, corresponding to total integrated luminosities of $22 ~\mu b^{-1}$ and $28~nb^{-1}$, respectively. The measurement is performed using a modified Pearson correlation coefficient with the charged-particle tracks on an event-by-event basis. The modified Pearson correlation coefficients for the $2^{nd}$-, 3$^{rd}$-, and 4$^{th}$-order harmonics are measured as a function of event centrality quantified as the number of charged particles or the number of nucleons participating in the collision. The measurements are performed for several intervals of the charged-particle transverse momentum. The correlation coefficients for all studied harmonics exhibit a strong centrality evolution in the lead-lead collisions, which only weakly depends on the charged-particle momentum range. In the proton-lead collisions, the modified Pearson correlation coefficient measured for the second harmonics shows only weak centrality dependence. The data is qualitatively described by the predictions based on the hydrodynamical model.
The $c_{k}$ for the 0.5-2 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in Pb+Pb collisions.
The $c_{k}$ for the 0.5-5 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in Pb+Pb collisions.
The $c_{k}$ for the 1-2 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in Pb+Pb collisions.
The production cross-sections for $W^{\pm}$ and $Z$ bosons are measured using ATLAS data corresponding to an integrated luminosity of 4.0 pb$^{-1}$ collected at a centre-of-mass energy $\sqrt{s}=2.76$ TeV. The decay channels $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell $ are used, where $\ell$ can be an electron or a muon. The cross-sections are presented for a fiducial region defined by the detector acceptance and are also extrapolated to the full phase space for the total inclusive production cross-section. The combined (average) total inclusive cross-sections for the electron and muon channels are: \begin{eqnarray} \sigma^{\text{tot}}_{W^{+}\rightarrow \ell \nu}& = & 2312 \pm 26\ (\text{stat.})\ \pm 27\ (\text{syst.}) \pm 72\ (\text{lumi.}) \pm 30\ (\text{extr.})\text{pb} \nonumber, \\ \sigma^{\text{tot}}_{W^{-}\rightarrow \ell \nu}& = & 1399 \pm 21\ (\text{stat.})\ \pm 17\ (\text{syst.}) \pm 43\ (\text{lumi.}) \pm 21\ (\text{extr.})\text{pb} \nonumber, \\ \sigma^{\text{tot}}_{Z \rightarrow \ell \ell}& = & 323.4 \pm 9.8\ (\text{stat.}) \pm 5.0\ (\text{syst.}) \pm 10.0\ (\text{lumi.}) \pm 5.5 (\text{extr.}) \text{pb} \nonumber. \end{eqnarray} Measured ratios and asymmetries constructed using these cross-sections are also presented. These observables benefit from full or partial cancellation of many systematic uncertainties that are correlated between the different measurements.
Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.
Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> mu+ nu final state.
Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nu final state.
A search is performed for neutral non-standard-model Higgs bosons decaying to two muons in the context of the minimal supersymmetric standard model (MSSM). Proton-proton collision data recorded by the CMS experiment at the CERN Large Hadron Collider at a center-of-mass energy of 13 TeV were used, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The search is sensitive to neutral Higgs bosons produced via the gluon fusion process or in association with a $\mathrm{b\overline{b}}$ quark pair. No significant deviations from the standard model expectation are observed. Upper limits at 95% confidence level are set in the context of the $m_\mathrm{h}^{\text{mod+}}$ and phenomenological MSSM scenarios on the parameter $\tan\beta$ as a function of the mass of the pseudoscalar A boson, in the range from 130 to 600 GeV. The results are also used to set a model-independent limit on the product of the branching fraction for the decay into a muon pair and the cross section for the production of a scalar neutral boson, either via gluon fusion, or in association with b quarks, in the mass range from 130 to 1000 GeV.
The 95% CL upper limits on tanb as a function of mA for the mhmod plus MSSM scenario
The 95% CL upper limits on tanb as a function of mA for the hMSSM scenario
The 95% CL upper limits on the production cross section times the branching fraction as a function of mA in the case of a b-associated production
A combination of four searches for new physics involving signatures with at least one photon and large missing transverse momentum, motivated by generalized models of gauge-mediated supersymmetry (SUSY) breaking, is presented. All searches make use of proton-proton collision data at $\sqrt{s}=$ 13 TeV, which were recorded with the CMS detector at the LHC in 2016, and correspond to an integrated luminosity of 35.9 fb$^{-1}$. Signatures with at least one photon and large missing transverse momentum are categorized into events with two isolated photons, events with a lepton and a photon, events with additional jets, and events with at least one high-energy photon. No excess of events is observed beyond expectations from standard model processes, and limits are set in the context of gauge-mediated SUSY. Compared to the individual searches, the combination extends the sensitivity to gauge-mediated SUSY in both electroweak and strong production scenarios by up to 100 GeV in neutralino and chargino masses, and yields the first CMS result combining various SUSY searches in events with photons at $\sqrt{s}=$ 13 TeV.
Neutralino Branching Fraction in GGM scenario
Neutralino Mass in GGM scenario
Data from Figure 3 of the paper
The two-particle angular correlation functions, $R_2$, of pions, kaons, and protons in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV were measured by the STAR experiment at RHIC. These correlations were measured for both like-sign and unlike-sign charge combinations and versus the centrality. The correlations of pions and kaons show the expected near-side ({\it i.e.}, at small relative angles) peak resulting from short-range mechanisms. The amplitudes of these short-range correlations decrease with increasing beam energy. However, the proton correlation functions exhibit strong anticorrelations in the near-side region. This behavior is observed for the first time in an A+A collision system. The observed anticorrelation is $p_{T}$-independent and decreases with increasing beam energy and centrality. The experimental results are also compared to the Monte Carlo models UrQMD, Hijing, and AMPT.
Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 7.7 GeV
Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 11.5 GeV
Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 14.5 GeV
This paper presents a measurement of quantities related to the formation of jets from high-energy quarks and gluons (fragmentation). Jets with transverse momentum 100 GeV $<p_T<$ 2.5 TeV and pseudorapidity $|\eta| < 2.1$ from an integrated luminosity of 33 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collisions are reconstructed with the ATLAS detector at the Large Hadron Collider. Charged-particle tracks with $p_T > 500$ MeV and $|\eta| < 2.5$ are used to probe the detailed structure of the jet. The fragmentation properties of the more forward and the more central of the two leading jets from each event are studied. The data are unfolded to correct for detector resolution and acceptance effects. Comparisons with parton shower Monte Carlo generators indicate that existing models provide a reasonable description of the data across a wide range of phase space, but there are also significant differences. Furthermore, the data are interpreted in the context of quark- and gluon-initiated jets by exploiting the rapidity dependence of the jet flavor fraction. A first measurement of the charged-particle multiplicity using model-independent jet labels (topic modeling) provides a promising alternative to traditional quark and gluon extractions using input from simulation. The simulations provide a reasonable description of the quark-like data across the jet $p_T$ range presented in this measurement, but the gluon-like data have systematically fewer charged particles than the simulations.
$\langle n_{ch} \rangle$, forward jet.
$\langle n_{ch} \rangle$, central jet.
$\langle \zeta \rangle$, forward jet.
High transverse momentum ($p_T$) particle production is suppressed due to parton (jet) energy loss in the hot dense medium created in relativistic heavy-ion collisions. Redistribution of energy at low-to-modest $p_T$ has been elusive to measure because of large anisotropic backgrounds. We report a data-driven method for background evaluation and subtraction, exploiting the away-side pseudorapidity gaps, to measure the jetlike correlation shape in Au+Au collisions at $\sqrt{s_{_\mathrm{NN}}}=200$ GeV with the STAR experiment. The correlation shapes, for trigger particle $p_T>3$ GeV/$c$ and various associated particle $p_T$ ranges within $0.5<p_T<10$ GeV/$c$, are consistent with Gaussians and their widths are found to increase with centrality. The results indicate jet broadening in the medium created in central heavy-ion collisions.
Distributions of the recoil momentum within 0.5<\eta<1 (Px|_{0.5}^{1}) from high-pT trigger particles of 3<pT_Trig<10 GeV/c in 50-80% peripheral collisions
Distributions of the recoil momentum within 0.5<\eta<1 (Px|_{0.5}^{1}) from high-pT trigger particles of 3<pT_Trig<10 GeV/c in 0-10% central collisions
Dihadron azimuthal correlations in close-region and far-region for 3<pT_Trig<10 GeV/c and 1<pT_Assoc<2 GeV/c in 10-30% Au+Au collisions at \sNN=200 GeV