The spin correlation parameter A oonn for pp elastic scattering was measured at 0.88, 1.1, 1.3, 1.6, 1.8, 2.1, 2.4 and 2.7 GeV using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. At the first two energies, the new measurements at θ CM < 50° complete our previous data from 45° to 90°. Between 1.3 and 2.7 GeV the measurements were performed in two overlapping angular regions covering together the CM angles from 28° (at the lower energies) or 18° (at the highest energy) to > 90°. At all energies above 1.3 GeV the angular distribution shows a dip at fixed four-momentum transfer − t ∼ 0.90 (GeV/ c ) 2 . The value of A oonn ( θ CM = 90°) decreases from A oonn (90°) ≅ 0.57 at 0.88 GeV to A oonn (90°) ≅ 0.35 at 2.7 GeV. However, the large value found at 1.8 GeV indicates that the energy dependence is not monotonic.
Errors are statistical plus random-like instrumental uncertainties.
Errors are statistical plus random-like instrumental uncertainties.
Errors are statistical plus random-like instrumental uncertainties.
We report measurements of the two-photon processes e+e−→e+e−π+π− and e+e−→e+e−K+K−, at an e+e− center-of-mass energy of 29 GeV. In the π+π− data a high-statistics analysis of the f(1270) results in a γγ width Γ(γγ→f)=3.2±0.4 keV. The π+π− continuum below the f mass is well described by a QED Born approximation, whereas above the f mass it is consistent with a QCD-model calculation if a large contribution from the f is assumed. For the K+K− data we find agreement of the high-mass continuum with the QCD prediction; limits on f′(1520) and θ(1720) formation are presented.
Data read from graph. Additional overall systematic error 20% not included.
Data read from graph.. Additional overall systematic error 20% not included.
Data read from graph.. Additional overall systematic error 20% not included.. The Q**2 dependence is normalized to unity for the bin centred on Q**2 = 0.
We report a measurement of the reaction γγ→K+K−π+π− in both tagged and untagged events at PEP. The cross section rises with invariant γγ mass to about 15 nb at 2 GeV and falls slowly at higher masses. We find clear evidence for the processes γγ→φπ+π− and γγ→K*0(892)Kπ. Upper limits (95% C.L.) of 1.5 and 5.7 nb in the mass range from 1.7 to 3.7 GeV are obtained for φρ0 and K*0K¯*0 production, respectively.
No description provided.
No description provided.
Untagged sample, (non-resonant).
Measurements of K − p elastic scattering have been carried out at 14 momenta between 610 MeV/ c and 943 MeV/ c over the angular range −0.9 < cos θ < 0.9. The results agree well with the best existing data and have significantly smaller errors.
No description provided.
DIFFERENTIAL CROSS SECTION AT 0 DEG CALCULATED FROM DISPERSION RELATIONS AND AT 180 DEG INTERPOLATED FROM BUBBLE CHAMBER MEASUREMENTS.
LEGENDRE POLYNOMIAL FIT, INCLUDING FORWARD AND BACKWARD POINTS.
Measurements of K + p elastic scattering have been carried out at 13 momenta between 432 MeV/ c and 939 MeV/ c using spark chambers. The data establish unambiguously the constructive interference of the Coulomb and nuclear amplitudes at 432 MeV/ c . The elastic cross section is found to be independent of momentum through the range covered. The phase shifts for S, P, D and F waves are obtained in an energy dependent analysis in which higher waves are held at theoretical values. The initial behaviour ofthe P, D and F amplitudes is quite close to that predicted by the calculation of the peripheral partial waves. Only the P3 and D5 amplitudes become strikingly different with increasing momentum.
COULOMB INTERFERENCE EFFECT SEEN AT SMALL ANGLES.
No description provided.
No description provided.
We present data from a spark-chamber study of K+p elastic scattering between 432 and 939 MeV/c, over the range −0.6<cosθc.m.<+0.7. With measurements at 13 momenta, and between 2000 events at the lowest momentum and 5000 events at the highest momentum, there is a major improvement over previous data. The elastic cross sections deduced from the differential cross sections are almost independent of momentum through the range covered. The data are inconsistent with counter measurements of the total cross section which suggest a sharp shoulder in the cross section at about 700 MeV/c.
No description provided.
No description provided.
No description provided.