We present a measurement of the differential cross section as a function of transverse momentum of the Z boson in ppbar collisions at sqrt{s}=1.8 TeV using data collected by the D0 experiment at the Fermilab Tevatron Collider during 1994--1996. We find good agreement between our data and the NNLO resummation prediction and extract values of the non-perturbative parameters for the resummed prediction from a fit to the differential cross section.
Resonance production in the γγ reactionse+e−→e+e+e−π0π0 ande+e−π0η has been studied with the JADE detector at PETRA. The decay widths into γγ of thef2(1270),a0(980) anda2(1320) were measured to be\(\Gamma _{\gamma \gamma } (f_2 (1270)) = 3.19 \pm 0.09_{ - 0.38}^{ + 0.22} \) Kev,Γλλ(a0(980))=0.28±0.04±0.10 KeV/BR(a0(980)→π0η) andΓλλ(a2(1320))=1.01±0.14±0.22KeV. For thef0(975) andf4(2050) upper limits of the widths were obtained,Γλλ(f0(975))<0.6 KeV, andΓλλ(f4(2050))<1.1 KeV, both at the 95% C.L. Assuming that the spin 0 background under thef2(1270) is small, thef2(1270) was found to be produced exclusively in a helicity 2 state. The helicity 0 contribution is <15% at the 95% C.L. The cross section forλλ→π0π0 in the mass range 2.0–3.5 GeV/c2 was measured for the first time. Since the cross section forλλ→π+π− is a factor ∼2 larger, ππ production in this range can be interpreted as taking place via isospin 0 production.
Measurements ofR, sphericity and thrust are presented for c.m. energies between 12 and 31.6 GeV. A possible contribution of at\(\bar t\) continuum can be ruled out for c.m. energies between 16 and 31 GeV.
The production of photons ine+e−→γ+hadrons is investigated at three centre of mass energies around 14, 22 and 34 GeV. On average, photons carry 25% of the total available energy, with a multiplicity similar to the charged multiplicity. The inclusive photon spectra are found to scale with the centre of mass energy as a function of the Feynman variablex. π0 and η mesons are reconstructed from their decay photons. The slopes of the spectra are similar to that for charged pions and approximate scaling is observed for π0 production. The mean π0 and η multiplicities are given. The observed photon yield can be fully accounted for by hadron decays and initial state radiation. However, up to one extra photon per event from other sources cannot be excluded.
We present an analysis ofρ0ρ0 production by two photons in theρ0ρ0 invariant mass range from 1.2 to 2.0 GeV. From a study of the angular correlations in the process γγ→ρ0ρ0→π−π+π− we exclude a dominant contribution fromJP=0− or 2− states. The data indicate sizeable contributions fromJP=0+ for four pion massesM4π<1.7 GeV and fromJP=2+ forM4π>1.7 GeV. The data are also well described by a model with isotropic production and uncorrelated isotropic decay of theρ0,s. The cross section stays high below the nominalρ0ρ0 threshold, i.e.M4π<1.5 GeV. The matrix element forρ0ρ0 production is found to decrease steeply with increasingM4π. Upper limits for the couplings of the ι(1440) and Θ(1640) to γγ andρ0ρ0 are given:Γ(ι→γγ)·B(ι→ρ0ρ0)<1.0 keV andΓ(Θ→γγ)
None
Two-photon production of the exclusive final statesp\(\bar p\)+nπ (n=0, 1, 2, and 3) has been investigated using the ARGUS detector at thee+e− storage ring DORIS II at DESY. The reactionsγγ→p\(\bar p\)π andγγ→p\(\bar p\)π+π−π0 have been observed for the first time, as have theΔ++ and\(\overline {\Delta ^{ ++ } } \) baryons in the final statep\(\bar p\)π+π−. No evidence was found forΔ++\(\overline {\Delta ^{ ++ } } \) production. Topological cross sections for two-photon production ofp\(\bar p\),p\(\bar p\)π0,p\(\bar p\)π+π− andp\(\bar p\)π+π−π0, as well as the crosssection forγγ→Δ++\(\bar p\)π+π−+c.c., have been measured. Upper limits are given for the cross section forγγ→Δ0\(\overline {\Delta ^0 } \),γγ→Δ++\(\overline {\Delta ^{ ++ } } \) andγγ→Λ\(\bar \Lambda \).
We report on a high precision measurement of ϕ-meson production in continuum events and in direct decays of the Υ(1S)- and Υ(2S)-mesons. The ratio of the total production rate of ϕ-mesons in direct Υ(1S)- and Υ(2S)-decays over that in continuum events is 1.32±0.08±0.09 and 1.07±0.13±0.11 respectively. This is compatible with the corresponding ratio obtained for lighter mesons, but is appreciably smaller than the relative baryon production rate.
Transverse particle momenta have been measured ine+e− annihilation into hadrons at c.m. energies between 9.4 and 31.6 GeV. The data are fully corrected for detector effects and radiation in the initial state. A comparison is made with recent QCD calculations.
We present evidence for the exclusive reaction e+e−→Ds±Ds*∓, observed with the Mark III detector at the SLAC storage ring SPEAR. The Ds± is reconstructed in the φπ± decay mode, while the Ds*∓ is detected as a narrow peak in the recoil-mass distribution. The mass of the Ds* is found to be 2109.3±2.1±3.1 MeV/c2, yielding a Ds*−Ds mass difference of 137.9±2.1±4.3 MeV/c2. The width of the Ds* is <22 MeV/c2 at the 90%-confidence level. The observed signal corresponds to σ(e+e−→Ds+Ds*−+Ds−Ds*+)B(Ds+→φπ+)=30±6±11 pb at s=4.14 GeV.