Measurement of differential $b\bar{b}$- and $c\bar{c}$-dijet cross-sections in the forward region of $pp$ collisions at $\sqrt{s}=13 ~ \mathrm{TeV}$

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Ackernley, Thomas ; et al.
JHEP 02 (2021) 023, 2021.
Inspire Record 1823739 DOI 10.17182/hepdata.110430

The inclusive $b \bar{b}$- and $c \bar{c}$-dijet production cross-sections in the forward region of $pp$ collisions are measured using a data sample collected with the LHCb detector at a centre-of-mass energy of 13 TeV in 2016. The data sample corresponds to an integrated luminosity of 1.6 fb$^{-1}$. Differential cross-sections are measured as a function of the transverse momentum and of the pseudorapidity of the leading jet, of the rapidity difference between the jets, and of the dijet invariant mass. A fiducial region for the measurement is defined by requiring that the two jets originating from the two $b$ or $c$ quarks are emitted with transverse momentum greater than 20 GeV$/c$, pseudorapidity in the range $2.2 < \eta < 4.2$, and with a difference in the azimuthal angle between the two jets greater than 1.5. The integrated $b \bar{b}$-dijet cross-section is measured to be $53.0 \pm 9.7$ nb, and the total $c \bar{c}$-dijet cross-section is measured to be $73 \pm 16$ nb. The ratio between $c \bar{c}$- and $b \bar{b}$-dijet cross-sections is also measured and found to be $1.37 \pm 0.27$. The results are in agreement with theoretical predictions at next-to-leading order.

17 data tables

The total $b \bar{b}$-dijet and $c \bar{c}$-dijet cross-sections and their ratio in the fiducial region, compared with the NLO predictions. The first uncertainty is the combined statistical and systematic uncertainty and the second is the uncertainty from the luminosity. For the predictions, the first uncertainty corresponds to the scale uncertainty, the second to the PDF uncertainty.

Numerical results of $b \bar{b}$- and $c \bar{c}$-dijet cross-sections, $c \bar{c}$/$b \bar{b}$ dijet cross-section ratios and their total uncertainties as a function of the leading jet $\eta$ (pseudorapidity).

Numerical results of $b \bar{b}$- and $c \bar{c}$-dijet cross-sections, $c \bar{c}$/$b \bar{b}$ dijet cross-section ratios and their total uncertainties as a function of $\Delta y^*$.

More…

Dijet azimuthal correlations and conditional yields in $pp$ and $p$+Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.C 100 (2019) 034903, 2019.
Inspire Record 1717481 DOI 10.17182/hepdata.93905

This paper presents a measurement of forward-forward and forward-central dijet azimuthal angular correlations and conditional yields in proton-proton ($pp$) and proton-lead ($p$+Pb) collisions as a probe of the nuclear gluon density in regions where the fraction of the average momentum per nucleon carried by the parton entering the hard scattering is low. In these regions, gluon saturation can modify the rapidly increasing parton distribution function of the gluon. The analysis utilizes 25 pb$^{-1}$ of $pp$ data and 360 $\mu \mathrm{b}^{-1}$ of $p$+Pb data, both at $\sqrt{s_{\rm NN}}$ = 5.02 TeV, collected in 2015 and 2016, respectively, with the ATLAS detector at the LHC. The measurement is performed in the center-of-mass frame of the nucleon-nucleon system in the rapidity range between $-$4.0 and 4.0 using the two highest transverse momentum jets in each event, with the highest transverse momentum jet restricted to the forward rapidity range. No significant broadening of azimuthal angular correlations is observed for forward-forward or forward-central dijets in $p$+Pb compared to $pp$ collisions. For forward-forward jet pairs in the proton-going direction, the ratio of conditional yields in $p$+Pb collisions to those in $pp$ collisions is suppressed by approximately 20%, with no significant dependence on the transverse momentum of the dijet system. No modification of conditional yields is observed for forward-central dijets.

11 data tables

Unfolded azimuthal angular correlation distributions. Black markers represent p+Pb, red markers p+p

Unfolded width of azimuthal angular correlation distributions. Full markers represent p+Pb, open markers p+p

Unfolded Dijet conditional yields. Full markers represent p+Pb, open markers p+p

More…

Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 371, 2016.
Inspire Record 1424833 DOI 10.17182/hepdata.73976

A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at sqrt(s) = 8 TeV. The data correspond to an integrated luminosity of 19.7 inverse femtobarns. The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t t-bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95% confidence level for the product of the production cross section and branching fraction sigma(gg to X) B(X to HH to b b-bar b b-bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with a mass scale Lambda[R] = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV.

7 data tables

Observed $m_\mathrm{jj}$ spectrum (black points) compared with a background estimate (black line), obtained in background only hypothesis, for HPHP category. The simulated radion resonances of $m_\mathrm{X} = 1.5$ and 2 TeV are also shown.

Observed $m_\mathrm{jj}$ spectrum (black points) compared with a background estimate (black line), obtained in background only hypothesis, for HPLP category. The simulated radion resonances of $m_\mathrm{X} = 1.5$ and 2 TeV are also shown.

Observed $m_\mathrm{jj}$ spectrum (black points) compared with a background estimate (black line), obtained in background only hypothesis, for LPHP category. The simulated radion resonances of $m_\mathrm{X} = 1.5$ and 2 TeV are also shown.

More…

Search for quark contact interactions and extra spatial dimensions using dijet angular distributions in proton-proton collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 746 (2015) 79-99, 2015.
Inspire Record 1327224 DOI 10.17182/hepdata.68776

A search is presented for quark contact interactions and extra spatial dimensions in proton-proton collisions at sqrt(s) = 8 TeV using dijet angular distributions. The search is based on a data set corresponding to an integrated luminosity of 19.7 inverse femtobarns collected by the CMS detector at the CERN LHC. Dijet angular distributions are found to be in agreement with the perturbative QCD predictions that include electroweak corrections. Limits on the contact interaction scale from a variety of models at next-to-leading order in QCD corrections are obtained. A benchmark model in which only left-handed quarks participate is excluded up to a scale of 9.0 (11.7) TeV for destructive (constructive) interference at 95% confidence level. Lower limits between 5.9 and 8.4 TeV on the scale of virtual graviton exchange are extracted for the Arkani-Hamed--Dimopoulos--Dvali model of extra spatial dimensions.

5 data tables

Measured dijet angular distributions in bin of dijet invariant mass. P=3 and P=4 refers to the two jets in the final state.

Measured dijet angular distributions in bin of dijet invariant mass.P=3 and P=4 refers to the two jets in the final state.

Measured dijet angular distributions in bin of dijet invariant mass. P=3 and P=4 refers to the two jets in the final state.

More…

Measurement of dijet cross sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 05 (2014) 059, 2014.
Inspire Record 1268975 DOI 10.17182/hepdata.62289

Double-differential dijet cross sections measured in pp collisions at the LHC with a 7 TeV centre-of-mass energy are presented as functions of dijet mass and rapidity separation of the two highest-pT jets. These measurements are obtained using data corresponding to an integrated luminosity of 4.5/fb, recorded by the ATLAS detector in 2011. The data are corrected for detector effects so that cross sections are presented at the particle level. Cross sections are measured up to 5 TeV dijet mass using jets reconstructed with the anti-kt algorithm for values of the jet radius parameter of 0.4 and 0.6. The cross sections are compared with next-to-leading-order perturbative QCD calculations by NLOJET++ corrected to account for non-perturbative effects. Comparisons with POWHEG predictions, using a next-to-leading-order matrix element calculation interfaced to a parton-shower Monte Carlo simulation, are also shown. Electroweak effects are accounted for in both cases. The quantitative comparison of data and theoretical predictions obtained using various parameterizations of the parton distribution functions is performed using a frequentist method. An example setting a lower limit on the compositeness scale for a model of contact interactions is presented, showing that the unfolded results can be used to constrain contributions to dijet production beyond that predicted by the Standard Model.

12 data tables

Measured double-differential dijet cross sections for the range 0.0 <= y* < 0.5 and jet radius parameter R = 0.4. The statistical uncertainties from data and MC simulation have been combined. The three columns correspond to nominal, stronger or weaker correlations between jet energy scale uncertainty components.

Measured double-differential dijet cross sections for the range 0.5 <= y* < 1.0 and jet radius parameter R = 0.4. The statistical uncertainties from data and MC simulation have been combined. The three columns correspond to nominal, stronger or weaker correlations between jet energy scale uncertainty components.

Measured double-differential dijet cross sections for the range 1.0 <= y* < 1.5 and jet radius parameter R = 0.4. The statistical uncertainties from data and MC simulation have been combined. The three columns correspond to nominal, stronger or weaker correlations between jet energy scale uncertainty components.

More…

Studies of Jet Mass in Dijet and W/Z + Jet Events

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 05 (2013) 090, 2013.
Inspire Record 1224539 DOI 10.17182/hepdata.60335

Invariant mass spectra for jets reconstructed using the anti-kt and Cambridge-Aachen algorithms are studied for different jet "grooming" techniques in data corresponding to an integrated luminosity of 5 inverse femtobarns, recorded with the CMS detector in proton-proton collisions at the LHC at a center-of-mass energy of 7 TeV. Leading-order QCD predictions for inclusive dijet and W/Z+jet production combined with parton-shower Monte Carlo models are found to agree overall with the data, and the agreement improves with the implementation of jet grooming methods used to distinguish merged jets of large transverse momentum from softer QCD gluon radiation.

74 data tables

The unfolded distributions (x1000) for the mean mass of the two leading jets in in dijet events for reconstructed AK7 jets, for the mean PT of the two leading jets in the range 220-300 GeV/c.

The unfolded distributions (x1000) for the mean mass of the two leading jets in in dijet events for reconstructed AK7 jets, for the mean PT of the two leading jets in the range 300-450 GeV/c.

The unfolded distributions (x1000) for the mean mass of the two leading jets in in dijet events for reconstructed AK7 jets, for the mean PT of the two leading jets in the range 450-500 GeV/c.

More…

Measurements of differential jet cross sections in proton-proton collisions at sqrt(s)=7 TeV with the CMS detector

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 87 (2013) 112002, 2013.
Inspire Record 1208923 DOI 10.17182/hepdata.66887

Measurements of inclusive jet and dijet production cross sections are presented. Data from LHC proton-proton collisions at $\sqrt{s}$ = 7 TeV, corresponding to 5.0 inverse femtobarns of integrated luminosity, have been collected with the CMS detector. Jets are reconstructed up to rapidity 2.5, transverse momentum 2 TeV, and dijet invariant mass 5 TeV, using the anti-k$_t$ clustering algorithm with distance parameter R = 0.7. The measured cross sections are corrected for detector effects and compared to perturbative QCD predictions at next-to-leading order, using five sets of parton distribution functions.

10 data tables

Inclusive Jet Cross Section for |rapidity| < 0.5 as a function of the jet transverse momentum. The (sys) error is the total systematic error, including the luminosity uncertainty of 2.2%.

Inclusive Jet Cross Section for |rapidity| 0.5 TO 1.0 as a function of the jet transverse momentum. The (sys) error is the total systematic error, including the luminosity uncertainty of 2.2%.

Inclusive Jet Cross Section for |rapidity| 1.0 TO 1.5 as a function of the jet transverse momentum. The (sys) error is the total systematic error, including the luminosity uncertainty of 2.2%.

More…

Measurement of the flavour composition of dijet events in pp collisions at sqrt{s}=7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Eur.Phys.J.C 73 (2013) 2301, 2013.
Inspire Record 1188891 DOI 10.17182/hepdata.68119

This paper describes a measurement of the flavour composition of dijet events produced in pp collisions at sqrt{s}=7 TeV using the ATLAS detector. The measurement uses the full 2010 data sample, corresponding to an integrated luminosity of 39 pb^-1. Six possible combinations of light, charm and bottom jets are identified in the dijet events, where the jet flavour is defined by the presence of bottom, charm or solely light flavour hadrons in the jet. Kinematic variables, based on the properties of displaced decay vertices and optimised for jet flavour identification, are used in a multidimensional template fit to measure the fractions of these dijet flavour states as functions of the leading jet transverse momentum in the range 40 GeV to 500 GeV and jet rapidity |y| < 2.1. The fit results agree with the predictions of leading- and next-to-leading-order calculations, with the exception of the dijet fraction composed of bottom and light flavour jets, which is underestimated by all models at large transverse jet momenta. The ability to identify jets containing two b-hadrons, originating from e.g. gluon splitting, is demonstrated. The difference between bottom jet production rates in leading and subleading jets is consistent with the next-to-leading-order predictions.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Observation of a diffractive contribution to dijet production in proton-proton collisions at sqrt(s)=7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 87 (2013) 012006, 2013.
Inspire Record 1184941 DOI 10.17182/hepdata.68117

The cross section for dijet production in pp collisions at sqrt(s) = 7 TeV is presented as a function of xi, a variable that approximates the fractional momentum loss of the scattered proton in single-diffractive events. The analysis is based on an integrated luminosity of 2.7 inverse nanobarns collected with the CMS detector at the LHC at low instantaneous luminosities, and uses events with jet transverse momentum of at least 20 GeV. The dijet cross section results are compared to the predictions of diffractive and nondiffractive models. The low-xi data show a significant contribution from diffractive dijet production, observed for the first time at the LHC. The associated rapidity gap survival probability is estimated.

1 data table

$\sqrt{s}=7$ TeV, $pp \to \text{jet}_{1}\text{jet}_{2}$, $|\eta^{j_1,j_2}|<4.4$, $p_{T}^{j_1,j_2} > 20$ GeV.


Ratios of dijet production cross sections as a function of the absolute difference in rapidity between jets in proton-proton collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 72 (2012) 2216, 2012.
Inspire Record 1102908 DOI 10.17182/hepdata.68066

A study of dijet production in proton-proton collisions was performed at sqrt(s) = 7 TeV for jets with pt > 35 GeV and abs(y) < 4.7 using data collected with the CMS detector at the LHC in 2010. Events with at least one pair of jets are denoted as 'inclusive'. Events with exactly one pair of jets are called 'exclusive'. The ratio of the cross section of all pairwise combinations of jets to the exclusive dijet cross section as a function of the rapidity difference between jets abs(Delta(y)) is measured for the first time up to abs(Delta(y)) = 9.2. The ratio of the cross section for the pair consisting of the most forward and the most backward jet from the inclusive sample to the exclusive dijet cross section is also presented. The predictions of the Monte Carlo event generators PYTHIA6 and PYTHIA8 agree with the measurements. In both ratios the HERWIG++ generator exhibits a more pronounced rise versus abs(Delta(y)) than observed in the data. The BFKL-motivated generators CASCADE and HEJ+ARIADNE predict for these ratios a significantly stronger rise than observed.

2 data tables

Inclusive to exclusive dijet production ratio.

Mueller-Navelet to exclusive dijet production ratio.