Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Phys.Lett. B804 (2020) 135377, 2020.
Inspire Record 1759860 DOI 10.17182/hepdata.93923

The differential invariant cross section as a function of transverse momentum ($p_\rm{T}$) of electrons from semileptonic heavy-flavour hadron decays was measured at midrapidity in proton-proton (pp) collisions at $\sqrt{s}$ = 5.02 TeV in the $p_\rm{T}$ interval 0.5-10 GeV/$c$, as well as the invariant yield in central (0-10%), semi-central (30-50%) and peripheral (60-80%) lead-lead (Pb-Pb) collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV in the $p_{\rm{T}}$ intervals 0.5-26 GeV/$c$ (0-10% and 30-50%) and 0.5-10 GeV/$c$ (60-80%). The modification of the electron yield with respect to what is expected for an incoherent superposition of nucleon-nucleon collisions is evaluated by measuring the nuclear modification factor $R_{\rm{AA}}$. The measurement of the $R_{\rm{AA}}$ in different centrality classes allows in-medium energy loss of charm and beauty quarks to be investigated. Moreover, the measured $R_{\rm{AA}}$ is sensitive to the modification of the parton distribution functions (PDF) in nuclei, like nuclear shadowing, which causes a suppression of the heavy-quark production at low $p_\rm{T}$ in heavy-ion collisions at LHC.

7 data tables

HFe cross section in pp

HFe cross section in Pb-Pb, 0-10 centrality

HFe cross section in Pb-Pb, 30-50 centrality

More…

Studies of J/$\psi$ production at forward rapidity in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
JHEP 2002 (2020) 041, 2020.
Inspire Record 1753083 DOI 10.17182/hepdata.93341

The inclusive J/ψ production in Pb–Pb collisions at the center-of-mass energy per nucleon pair $ \sqrt{s_{\mathrm{NN}}} $ = 5.02 TeV, measured with the ALICE detector at the CERN LHC, is reported. The J/ψ meson is reconstructed via the dimuon decay channel at forward rapidity (2.5 < y < 4) down to zero transverse momentum. The suppression of the J/ψ yield in Pb–Pb collisions with respect to binary-scaled pp collisions is quantified by the nuclear modification factor (R$_{AA}$). The R$_{AA}$ at $ \sqrt{s_{\mathrm{NN}}} $ = 5.02 TeV is presented and compared with previous measurements at $ \sqrt{s_{\mathrm{NN}}} $ = 2.76 TeV as a function of the centrality of the collision, and of the J/ψ transverse momentum and rapidity. The inclusive J/ψ RAA shows a suppression increasing toward higher transverse momentum, with a steeper dependence for central collisions. The modification of the J/ψ average transverse momentum and average squared transverse momentum is also studied. Comparisons with the results of models based on a transport equation and on statistical hadronization are carried out.[graphic not available: see fulltext]

43 data tables

Transverse momentum dependence (in 0-90% centrality class) of the inclusive J/$\psi$ $R_{\rm AA}$. The first uncertainty is statistical, the second is the uncorrelated systematic, while the third one is a $p_{\rm T}$-correlated systematic uncertainty.

The minimum and maximum variations for the $R_{\rm AA}$ of prompt J/$\psi$ with respect to the $R_{\rm AA}$ values of inclusive J/$\psi$ reported in Table 1. The variations correspond to two extreme hypotheses on the unknown contribution of non-prompt J/$\psi$.

Transverse momentum dependence (in 0-90% centrality class) of the ratio of the inclusive J/$\psi$ $R_{\rm AA}$ at $\sqrt{s_{NN}}$= 5.02 and 2.76 TeV. The first uncertainty is statistical, the second is the uncorrelated systematic, while the third one is a $p_{\rm T}$-correlated systematic uncertainty.

More…

$\Lambda_\mathrm{c}^+$ production in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Lett., 2018.
Inspire Record 1696315 DOI 10.17182/hepdata.89397

A measurement of the production of prompt $\Lambda_{\rm c}^{+}$ baryons in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02 $ TeV with the ALICE detector at the LHC is reported. The $\Lambda_{\rm c}^{+}$ and $\overline{\Lambda}_{\rm c}^{-}$ were reconstructed at midrapidity ($|y| < 0.5$) via the hadronic decay channel $\Lambda_{\rm c}^{+}\rightarrow {\rm p} {\rm K}_{\rm S}^{0}$ (and charge conjugate) in the transverse momentum and centrality intervals $6 < p_{\rm T} <12$ GeV/$c$ and 0-80%. The $\Lambda_{\rm c}^{+}$/D$^0$ ratio, which is sensitive to the charm quark hadronisation mechanisms in the medium, is measured and found to be larger than the ratio measured in minimum-bias pp collisions at $\sqrt{s} = 7$ TeV and in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02 $ TeV. In particular, the values in p-Pb and Pb-Pb collisions differ by about two standard deviations of the combined statistical and systematic uncertainties. The $\Lambda_{\rm c}^{+}$/D$^0$ ratio is also compared with model calculations including different implementations of charm quark hadronisation. The measured ratio is reproduced by models implementing a pure coalescence scenario, while adding a fragmentation contribution leads to an underestimation. The $\Lambda_{\rm c}^{+}$ nuclear modification factor, $R_{\rm AA}$, is also presented. The measured values of the $R_{\rm AA}$ of $\Lambda_{\rm c}^{+}$, D$_{\rm s}^+$ and non-strange D mesons are compatible within the combined statistical and systematic uncertainties. They show, however, a hint of a hierarchy $(R_{\rm AA}^{{\rm D}^{0}}<R_{\rm AA}^{{\rm D}_{\rm s}^+}<R_{\rm AA}^{\Lambda_{\rm c}^{+}})$, conceivable with a contribution of recombination mechanisms to charm hadron formation in the medium.

2 data tables

$\Lambda_{\rm {c}}^{+}$/${\rm D}^{0}$ ratio in 0-80% most central Pb-Pb collisions at $\sqrt{s_{\rm {NN}}} = 5.02$ TeV in the transverse momentum interval 6 < $p_{\rm {T}}$ < 12 GeV/${\it {c}}$

The nuclear modification factor $R_\mathrm{AA}$ of prompt $\Lambda_{\rm {c}}^{+}$ baryons in 0-80% most central Pb-Pb collisions at $\sqrt{s_{\rm {NN}}} = 5.02$ TeV in the transverse momentum interval 6 < $p_{\rm {T}}$ < 12 GeV/${\it {c}}$