The measurement of $\Sigma^{+}$ production in pp collisions at $\sqrt{s} = 13$ TeV is presented. The measurement is performed at midrapidity in both minimum-bias and high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV. The $\Sigma^{+}$ is reconstructed via its weak-decay topology in the decay channel $\Sigma^{+} \rightarrow {p} + \pi^{0}$ with $\pi^{0} \rightarrow \gamma + \gamma$. In a novel approach, the neutral pion is reconstructed by combining photons that convert in the detector material with photons measured in the calorimeters. The transverse-momentum ($p_{T}$) distributions of the $\Sigma^{+}$ and its rapidity densities d$N/$dy in both event classes are reported. The $p_{T}$ spectrum in minimum-bias collisions is compared to QCD-inspired event generators. The ratio of $\Sigma^{+}$ to previously measured $\Lambda$ baryons is in good agreement with calculations from the Statistical Hadronization Model. The high efficiency and purity of the novel reconstruction method for $\Sigma^{+}$ presented here will enable future studies of the interaction of $\Sigma^{+}$ with protons in the context of femtoscopic measurements, which could be crucial for understanding the equation of state of neutron stars.
$p_\mathrm{T}$-differential production yield of $\Sigma^+$ and $\bar{\Sigma}^-$ baryons in the high-multiplicity triggered pp collisions at $\sqrt{{s}}=13~\mathrm{{TeV}}$ in the rapidity interval $|y|<0.8$.
$p_\mathrm{T}$-differential production yield of $\Sigma^+$ and $\bar{\Sigma}^-$ baryons in the minimum-bias triggered pp collisions at $\sqrt{{s}}=13~\mathrm{{TeV}}$ in the rapidity interval $|y|<0.8$.
This paper reports the first measurement of the transverse momentum ($p_{\mathrm{T}}$) spectra of primary charged pions, kaons, (anti)protons, and unidentified particles as a function of the charged-particle flattenicity in pp collisions at $\sqrt{s}=13$ TeV. Flattenicity is a novel event shape observable that is measured in the pseudorapidity intervals covered by the V0 detector, $2.8<\eta<5.1$ and $-3.7<\eta<-1.7$. According to QCD-inspired phenomenological models, it shows sensitivity to multiparton interactions and is less affected by biases toward larger $p_{\mathrm{T}}$ due to local multiplicity fluctuations in the V0 acceptance than multiplicity. The analysis is performed in minimum-bias (MB) as well as in high-multiplicity events up to $p_{\mathrm{T}}=20$ GeV/$c$. The event selection requires at least one charged particle produced in the pseudorapidity interval $|\eta|<1$. The measured $p_{\mathrm{T}}$ distributions, average $p_{\mathrm{T}}$, kaon-to-pion and proton-to-pion particle ratios, presented in this paper, are compared to model calculations using PYTHIA 8 based on color strings and EPOS LHC. The modification of the $p_{\mathrm{T}}$-spectral shapes in low-flattenicity events that have large event activity with respect to those measured in MB events develops a pronounced peak at intermediate $p_{\mathrm{T}}$ ($2<p_{\mathrm{T}}<8$ GeV/$c$), and approaches the vicinity of unity at higher $p_{\mathrm{T}}$. The results are qualitatively described by PYTHIA, and they show different behavior than those measured as a function of charged-particle multiplicity based on the V0M estimator.
Transverse momentum spectrum of $\pi^{+} + \pi^{-}$ measured at midrapidity ($|y|<0.5$) in INEL>0 pp collisions at $\sqrt{s}$ = 13 TeV for different flattenicity event classes selected with the V0M estimator at forward rapidity (top figure, upper panel)
Transverse momentum spectrum of $K^{+} + K^{-}$ measured at midrapidity ($|y|<0.5$) in INEL>0 pp collisions at $\sqrt{s}$ = 13 TeV for different flattenicity event classes selected with the V0M estimator at forward rapidity (top figure, upper panel)
Transverse momentum spectrum of $p + \overline{p}$ measured at midrapidity ($|y|<0.5$) in INEL>0 pp collisions at $\sqrt{s}$ = 13 TeV for different flattenicity event classes selected with the V0M estimator at forward rapidity (top figure, upper panel)
The first measurement of $_{\Lambda}^{3}\mathrm{H}$ and $^3_ {\overline{\Lambda}}\overline{\mathrm{H}}$ differential production with respect to transverse momentum and centrality in Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$~TeV is presented. The $_{\Lambda}^{3}\mathrm{H}$ has been reconstructed via its two-charged-body decay channel, i.e., $_{\Lambda}^{3}\mathrm{H} \rightarrow {}^{3}\mathrm{He} + \pi^{-}$. A Blast-Wave model fit of the $p_{\rm T}$-differential spectra of all nuclear species measured by the ALICE collaboration suggests that the $_{\Lambda}^{3}\mathrm{H}$ kinetic freeze-out surface is consistent with that of other nuclei. The ratio between the integrated yields of $_{\Lambda}^{3}\mathrm{H}$ and $^3\mathrm{He}$ is compared to predictions from the statistical hadronisation model and the coalescence model, with the latter being favoured by the presented measurements.
Transverse momentum distributions of (anti)hypertriton in 0-10% V0M centrality class
Transverse momentum distributions of (anti)hypertriton in 10-30% V0M centrality class
Transverse momentum distributions of (anti)hypertriton in 30-50% V0M centrality class
The production of Z bosons is studied in the dimuon and dielectron decay channels in PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV, using data collected by the CMS experiment at the LHC. The PbPb data sample corresponds to an integrated luminosity of about 150 inverse microbarns, while the pp data sample collected in 2013 at the same nucleon-nucleon centre-of-mass energy has an integrated luminosity of 5.4 inverse picobarns. The Z boson yield is measured as a function of rapidity, transverse momentum, and collision centrality. The ratio of PbPb to pp yields, scaled by the number of inelastic nucleon-nucleon collisions, is found to be 1.06 +/- 0.05 (stat) +/- 0.08 (syst) in the dimuon channel and 1.02 +/- 0.08 (stat) +/- 0.15 (syst) in the dielectron channel, for centrality-integrated Z boson production. This binary collision scaling is seen to hold in the entire kinematic region studied, as expected for a colourless probe that is unaffected by the hot and dense QCD medium produced in heavy ion collisions.
The measured Z boson production cross section in pp collisions as a function of the Z boson pT for the dimuon decay channel in |y|<2.0.
The measured Z boson production cross section in pp collisions as a function of the Z boson pT for the dielectron decay channel in |y|<1.44.
The measured Z boson production cross section in pp collisions as a function of the Z boson rapidity for the dimuon decay channel.
The production of J/psi mesons is studied in pp collisions at sqrt(s)=7 TeV with the CMS experiment at the LHC. The measurement is based on a dimuon sample corresponding to an integrated luminosity of 314 inverse nanobarns. The J/psi differential cross section is determined, as a function of the J/psi transverse momentum, in three rapidity ranges. A fit to the decay length distribution is used to separate the prompt from the non-prompt (b hadron to J/psi) component. Integrated over J/psi transverse momentum from 6.5 to 30 GeV/c and over rapidity in the range |y| < 2.4, the measured cross sections, times the dimuon decay branching fraction, are 70.9 \pm 2.1 (stat.) \pm 3.0 (syst.) \pm 7.8(luminosity) nb for prompt J/psi mesons assuming unpolarized production and 26.0 \pm 1.4 (stat.) \pm 1.6 (syst.) \pm 2.9 (luminosity) nb for J/psi mesons from b-hadron decays.
Total cross section within the kinematic limits for prompt and non-prompt J/PSI production times branching ratio into MU+ MU-, assuming zero polarizartion. The second systematic error is the luminosity uncertainty.
Differential inclusive cross J/PSI section for the |rapidity| range 0 to 1.2 for each prompt J/PSI polarization scenario considered.
Differential inclusive cross J/PSI section for the |rapidity| range 1.2 to 1.6 for each prompt J/PSI polarization scenario considered.