Study of $Z \to ll\gamma$ decays at $\sqrt s~$= 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 84 (2024) 195, 2024.
Inspire Record 2712353 DOI 10.17182/hepdata.131524

This paper presents a study of $Z \to ll\gamma~$decays with the ATLAS detector at the Large Hadron Collider. The analysis uses a proton-proton data sample corresponding to an integrated luminosity of 20.2 fb$^{-1}$ collected at a centre-of-mass energy $\sqrt{s}$ = 8 TeV. Integrated fiducial cross-sections together with normalised differential fiducial cross-sections, sensitive to the kinematics of final-state QED radiation, are obtained. The results are found to be in agreement with state-of-the-art predictions for final-state QED radiation. First measurements of $Z \to ll\gamma\gamma$ decays are also reported.

77 data tables

Unfolded $M(l^{+}\gamma)$ distribution for $Z \to ee\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 63717.4 $\pm$ 252.4, NPowHeg truth =338714.

Unfolded $M(l^{-}\gamma)$ distribution for $Z \to ee\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 63855.8 $\pm$ 252.7 , NPowHeg truth =338708.

Unfolded $M(l^{+}\gamma)$ distribution for $Z \to \mu\mu\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 64809.8 $\pm$ 254.6, NPowHeg truth =634285.

More…

Measurement of the production cross-section of $J/\psi$ and $\psi(2$S$)$ mesons in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 84 (2024) 169, 2024.
Inspire Record 2705040 DOI 10.17182/hepdata.145071

Measurements of the differential production cross-sections of prompt and non-prompt $J/\psi$ and $\psi(2$S$)$ mesons with transverse momenta between 8 and 360 GeV and rapidity in the range $|y|<2$ are reported. Furthermore, measurements of the non-prompt fractions of $J/\psi$ and $\psi(2$S$)$, and the prompt and non-prompt $\psi(2$S$)$-to-$J/\psi$ production ratios, are presented. The analysis is performed using 140 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data recorded by the ATLAS detector at the LHC during the years 2015-2018.

9 data tables

Summary of results for cross-section of prompt $J/\psi$ decaying to a muon pair for 13 TeV data in fb/GeV. Uncertainties are statistical and systematic, respectively.

Summary of results for cross-section of non-prompt $J/\psi$ decaying to a muon pair for 13 TeV data in fb/GeV. Uncertainties are statistical and systematic, respectively.

Summary of results for cross-section of prompt $\psi(2S)$ decaying to a muon pair for 13 TeV data in fb/GeV. Uncertainties are statistical and systematic, respectively.

More…

A precise measurement of the Z-boson double-differential transverse momentum and rapidity distributions in the full phase space of the decay leptons with the ATLAS experiment at $\sqrt s$ = 8 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 84 (2024) 315, 2024.
Inspire Record 2698794 DOI 10.17182/hepdata.144246

This paper presents for the first time a precise measurement of the production properties of the Z boson in the full phase space of the decay leptons. The measurement is obtained from proton-proton collision data collected by the ATLAS experiment in 2012 at $\sqrt s$ = 8 TeV at the LHC and corresponding to an integrated luminosity of 20.2 fb$^{-1}$. The results, based on a total of 15.3 million Z-boson decays to electron and muon pairs, extend and improve a previous measurement of the full set of angular coefficients describing Z-boson decay. The double-differential cross-section distributions in Z-boson transverse momentum p$_T$ and rapidity y are measured in the pole region, defined as 80 $<$ m $<$ 100 GeV, over the range $|y| <$ 3.6. The total uncertainty of the normalised cross-section measurements in the peak region of the p$_T$ distribution is dominated by statistical uncertainties over the full range and increases as a function of rapidity from 0.5-1.0% for $|y| <$ 2.0 to 2-7% at higher rapidities. The results for the rapidity-dependent transverse momentum distributions are compared to state-of-the-art QCD predictions, which combine in the best cases approximate N$^4$LL resummation with N$^3$LO fixed-order perturbative calculations. The differential rapidity distributions integrated over p$_T$ are even more precise, with accuracies from 0.2-0.3% for $|y| <$ 2.0 to 0.4-0.9% at higher rapidities, and are compared to fixed-order QCD predictions using the most recent parton distribution functions. The agreement between data and predictions is quite good in most cases.

10 data tables

Measured $p_T$ cross sections in full-lepton phase space for |y| < 0.4.

Measured $p_T$ cross sections in full-lepton phase space for 0.4 < |y| < 0.8.

Measured $p_T$ cross sections in full-lepton phase space for 0.8 < |y| < 1.2.

More…

Evidence for the Higgs boson decay to a $Z$ boson and a photon at the LHC

The ATLAS & CMS collaborations Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.Lett. 132 (2024) 021803, 2024.
Inspire Record 2666787 DOI 10.17182/hepdata.142406

The first evidence for the Higgs boson decay to a $Z$ boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision data sets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140 fb$^{-1}$ for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is $2.2\pm0.7$ times the Standard Model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.

1 data table

The negative profile log-likelihood test statistic, where $\Lambda$ represents the likelihood ratio, as a function of the signal strength $\mu$ derived from the ATLAS data, the CMS data, and the combined result.


Search for Majorana neutrinos in same-sign $WW$ scattering events from $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 83 (2023) 824, 2023.
Inspire Record 2662303 DOI 10.17182/hepdata.141494

A search for Majorana neutrinos in same-sign $WW$ scattering events is presented. The analysis uses $\sqrt{s}= 13$ TeV proton-proton collision data with an integrated luminosity of 140 fb$^{-1}$ recorded during 2015-2018 by the ATLAS detector at the Large Hadron Collider. The analysis targets final states including exactly two same-sign muons and at least two hadronic jets well separated in rapidity. The modelling of the main backgrounds, from Standard Model same-sign $WW$ scattering and $WZ$ production, is constrained with data in dedicated signal-depleted control regions. The distribution of the transverse momentum of the second-hardest muon is used to search for signals originating from a heavy Majorana neutrino with a mass between 50 GeV and 20 TeV. No significant excess is observed over the background expectation. The results are interpreted in a benchmark scenario of the Phenomenological Type-I Seesaw model. In addition, the sensitivity to the Weinberg operator is investigated. Upper limits at the 95% confidence level are placed on the squared muon-neutrino-heavy-neutrino mass-mixing matrix element $\vert V_{\mu N} \vert^{2}$ as a function of the heavy Majorana neutrino's mass $m_N$, and on the effective $\mu\mu$ Majorana neutrino mass $|m_{\mu\mu}|$.

2 data tables

Observed and expected 95% CL upper limits on the heavy Majorana neutrino mixing element $\vert V_{\mu N} \vert^{2}$ as a function of $m_N$ in the Phenomenological Type-I Seesaw model.

Cutflow for a selection of signal samples used in this analysis. The flavour-aligned scenario (in which $\vert V_{\mu N} \vert^{2}=1$) is considered for heavy Majorana neutrino samples. The event yields include all correction factors applied to simulation, and is normalised to 140 fb$^{-1}$. The `Skim' selection requires 2 baseline muons and 2 jets satisfying the object definitions described in Section 3 and $m_{jj} > 150$ GeV. Uncertainties are statistical only.


Search for heavy Majorana or Dirac neutrinos and right-handed $W$ gauge bosons in final states with charged leptons and jets in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 83 (2023) 1164, 2023.
Inspire Record 2652625 DOI 10.17182/hepdata.141277

A search for heavy right-handed Majorana or Dirac neutrinos $N_{\mathrm{R}}$ and heavy right-handed gauge bosons $W_{\mathrm{R}}$ is performed in events with energetic electrons or muons, with the same or opposite electric charge, and energetic jets. The search is carried out separately for topologies of clearly separated final-state products (``resolved'' channel) and topologies with boosted final states with hadronic and/or leptonic products partially overlapping and reconstructed as a large-radius jet (``boosted'' channel). The events are selected from $pp$ collision data at the LHC with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector at $\sqrt{s}$ = 13 TeV. No significant deviations from the Standard Model predictions are observed. The results are interpreted within the theoretical framework of a left-right symmetric model, and lower limits are set on masses in the heavy right-handed $W_{\mathrm{R}}$ boson and $N_{\mathrm{R}}$ plane. The excluded region extends to about $m(W_{\mathrm{R}}) = 6.4$ TeV for both Majorana and Dirac $N_{\mathrm{R}}$ neutrinos at $m(N_{\mathrm{R}})<1$ TeV. $N_{\mathrm{R}}$ with masses of less than 3.5 (3.6) TeV are excluded in the electron (muon) channel at $m(W_{\mathrm{R}})=4.8$ TeV for the Majorana neutrinos, and limits of $m(N_{\mathrm{R}})$ up to 3.6 TeV for $m(W_{\mathrm{R}}) = 5.2$ (5.0) TeV in the electron (muon) channel are set for the Dirac neutrinos. These constitute the most stringent exclusion limits to date for the model considered.

40 data tables

Observed 95% CL exclusion contours in the $(m(W_{R}), m(N_{R}))$ plane in the electron channel for boosted.

Expected 95% CL exclusion contours in the $(m(W_{R}), m(N_{R}))$ plane in the electron channel for boosted.

Observed 95% CL exclusion contours in the $(m(W_{R}), m(N_{R}))$ plane in the muon channel for boosted.

More…

Measurement of electrons from open heavy-flavor hadron decays in Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV with the STAR detector

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, Jaroslav ; et al.
JHEP 06 (2023) 176, 2023.
Inspire Record 2641480 DOI 10.17182/hepdata.139080

We report a new measurement of the production of electrons from open heavy-flavor hadron decays (HFEs) at mid-rapidity ($|y|<$ 0.7) in Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV. Invariant yields of HFEs are measured for the transverse momentum range of $3.5 < p_{\rm T} < 9$ GeV/$c$ in various configurations of the collision geometry. The HFE yields in head-on Au+Au collisions are suppressed by approximately a factor of 2 compared to that in $p$+$p$ collisions scaled by the average number of binary collisions, indicating strong interactions between heavy quarks and the hot and dense medium created in heavy-ion collisions. Comparison of these results with models provides additional tests of theoretical calculations of heavy quark energy loss in the quark-gluon plasma.

6 data tables

Ratios of NPE (non-photonic electron) to PHE (photonic electron) as a function of $p_{\rm T}$ in 0-10% central (yellow circles) and 40-80% peripheral (green squares) Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV. Vertical bars represent statistical uncertainties while boxes represent systematic uncertainties. Horizontal bars indicate the bin width.

Invariant yields of electrons from decays of prompt $J/\psi$ (dot-dashed line), $\Upsilon$ (dotted line), Drell-Yan (long dash-dotted line), light vector mesons (long dashed line) and the combined HDE (hadron decayed electron) contribution (solid line), estimated utilizing experimental measurements, theoretical calculations, and PYTHIA and $\rm E_{VT}G_{EN}$ event generators, in 0-10% central Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV. Color bands represent systematic uncertainties.

Invariant yields of electrons from decays of prompt $J/\psi$ (dot-dashed line), $\Upsilon$ (dotted line), Drell-Yan (long dash-dotted line), light vector mesons (long dashed line) and the combined HDE (hadron decayed electron) contribution (solid line), estimated utilizing experimental measurements, theoretical calculations, and PYTHIA and $\rm E_{VT}G_{EN}$ event generators, in 40-80% central Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV. Color bands represent systematic uncertainties.

More…

Search for pair production of third-generation leptoquarks decaying into a bottom quark and a $\tau$-lepton with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 83 (2023) 1075, 2023.
Inspire Record 2637935 DOI 10.17182/hepdata.145072

A search for pair-produced scalar or vector leptoquarks decaying into a $b$-quark and a $\tau$-lepton is presented using the full LHC Run 2 (2015-2018) data sample of 139 fb$^{-1}$ collected with the ATLAS detector in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} =13$ TeV. Events in which at least one $\tau$-lepton decays hadronically are considered, and multivariate discriminants are used to extract the signals. No significant deviations from the Standard Model expectation are observed and 95% confidence-level upper limits on the production cross-section are derived as a function of leptoquark mass and branching ratio $B$ into a $\tau$-lepton and $b$-quark. For scalar leptoquarks, masses below 1460 GeV are excluded assuming $B=100$%, while for vector leptoquarks the corresponding limit is 1650 GeV (1910 GeV) in the minimal-coupling (Yang-Mills) scenario.

8 data tables

Acceptance $\times$ efficiency for the $\tau_\text{lep}\tau_\text{had}$ signal region assuming $\beta$ = 0.5 as a function of m$_\text{LQ}$.

Acceptance $\times$ efficiency for the $\tau_\text{had}\tau_\text{had}$ signal region assuming $\beta$ = 0.5 as a function of m$_\text{LQ}$.

The observed and expected 95% CL upper limits on the scalar LQ pair production cross-sections assuming B = 1 as a function of m$_\text{LQ}$.

More…

Search for a light charged Higgs boson in $t \rightarrow H^{\pm}b$ decays, with $H^{\pm} \rightarrow cb$, in the lepton+jets final state in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 09 (2023) 004, 2023.
Inspire Record 2635801 DOI 10.17182/hepdata.135457

A search for a charged Higgs boson, $H^{\pm}$, produced in top-quark decays, $t \rightarrow H^{\pm}b$, is presented. The search targets $H^{\pm}$ decays into a bottom and a charm quark, $H^{\pm} \rightarrow cb$. The analysis focuses on a selection enriched in top-quark pair production, where one top quark decays into a leptonically decaying $W$ boson and a bottom quark, and the other top quark decays into a charged Higgs boson and a bottom quark. This topology leads to a lepton-plus-jets final state, characterised by an isolated electron or muon and at least four jets. The search exploits the high multiplicity of jets containing $b$-hadrons, and deploys a neural network classifier that uses the kinematic differences between the signal and the background. The search uses a dataset of proton-proton collisions collected at a centre-of-mass energy $\sqrt{s}=13$ TeV between 2015 and 2018 with the ATLAS detector at CERN's Large Hadron Collider, amounting to an integrated luminosity of 139 fb$^{-1}$. Observed (expected) 95% confidence-level upper limits between 0.15% (0.09%) and 0.42% (0.25%) are derived for the product of branching fractions $\mathscr{B}(t\rightarrow H^{\pm}b) \times \mathscr{B}(H^{\pm}\rightarrow cb)$ for charged Higgs boson masses between 60 and 160 GeV, assuming the SM production of the top-quark pairs.

4 data tables

The observed 95% CL upper limits on $\mathscr{B}=\mathscr{B}(t\rightarrow H^{\pm}b) \times \mathscr{B}(H^{\pm}\rightarrow cb)$ as a function of $m_{H^{\pm}}$ and the expectation (dashed) under the background-only hypothesis. The inner green and outer yellow shaded bands show the $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties of the expected limits. The exclusion limits are presented for $m_{H^{\pm}}$ between 60 and 160 GeV with 10 GeV $m_{H^{\pm}}$ spacing and linear interpolation between adjacent mass points. Superimposed on the upper limits, the predictions from the 3HDM are shown, corresponding to three benchmark values for the parameters $X$, $Y$, and $Z$

Pre-fit event yields in each of the nine analysis regions. The $H^{\pm}$ signal yields for $m_{H^{\pm}}=130$ GeV and $m_{H^{\pm}}=70$ GeV are normalised to $\mathscr{B}_{\mathrm{ref}}=1\%$. The quoted uncertainties are the sum in quadrature of statistical and systematic uncertainties of the yields, computed taking into account correlations among processes resulting from the data-based $t\bar{t}$ correction procedure.

Post-fit yields in each of the nine analysis regions considered. The total prediction is shown after the fit to data under the signal-plus-background hypothesis assuming $H^{\pm}$ signal with $m_{H^{\pm}}=130$ GeV. The predicted yileds for the $H^{\pm}$ signal with $m_{H^{\pm}}=70$ GeV are also shown for reference. The best fit-values of $\mathscr{B}$ for $H^{\pm}$ signal with $m_{H^{\pm}}=130$ GeV and $m_{H^{\pm}}=70$ GeV are 0.16% and 0.07% respectively. The quoted uncertainties are the sum in quadrature of statistical and systematic uncertainties of the yields, computed taking into account correlations among nuisance parameters and among processes.

More…

Version 2
Searches for lepton-flavour-violating decays of the Higgs boson into $e\tau$ and $\mu\tau$ in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 166, 2023.
Inspire Record 2631088 DOI 10.17182/hepdata.135719

This paper presents direct searches for lepton flavour violation in Higgs boson decays, $H\rightarrow e\tau$ and $H\rightarrow\mu\tau$, performed using data collected with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Leptonic ($\tau \rightarrow \ell \nu_\ell \nu_\tau$) and hadronic ($\tau \rightarrow $ hadrons $ \nu_\tau$) decays of the $\tau$-lepton are considered. Two background estimation techniques are employed: the MC-template method, based on data-corrected simulation samples, and the Symmetry method, based on exploiting the symmetry between electrons and muons in the Standard Model backgrounds. No significant excess of events is observed and the results are interpreted as upper limits on lepton-flavour-violating branching ratios of the Higgs boson. The observed (expected) upper limits set on the branching ratios at 95% confidence level, $\mathcal{B}(H\rightarrow e\tau)<0.20\%$ (0.12%) and $\mathcal{B}(H\rightarrow \mu\tau)<0.18\%$ (0.09%), are obtained with the MC-template method from a simultaneous measurement of potential $H \rightarrow e\tau$ and $H \rightarrow\mu\tau$ signals. The best-fit branching ratio difference, $\mathcal{B}(H\rightarrow \mu\tau)- \mathcal{B}(H\rightarrow e\tau)$, measured with the Symmetry method in the channel where the $\tau$-lepton decays to leptons, is (0.25 $\pm$ 0.10)%, compatible with a value of zero within 2.5$\sigma$.

40 data tables

Fit results of the simultaneous measurements of the $H\to e\tau$ and $H\to \mu\tau$ signals (2POI) showing upper limits at 95% C.L. on the LFV branching ratios of the Higgs boson $H\to e\tau$. The results from standalone channel/categories fits are compared with the results of the combined fit.

Fit results of the simultaneous measurements of the $H\to e\tau$ and $H\to \mu\tau$ signals (2POI) showing upper limits at 95% C.L. on the LFV branching ratios of the Higgs boson $H\to e\tau$. The results from standalone channel/categories fits are compared with the results of the combined fit.

Fit results of the simultaneous measurements of the $H\to e\tau$ and $H\to \mu\tau$ signals (2POI) showing best-fit values of the LFV branching ratios of the Higgs boson $\hat{B}$($H\to e\tau$). The results from standalone channel/categories fits are compared with the results of the combined fit.

More…

Measurements of the suppression and correlations of dijets in Xe+Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abeling, K. ; et al.
Phys.Rev.C 108 (2023) 024906, 2023.
Inspire Record 2630510 DOI 10.17182/hepdata.139684

Measurements of the suppression and correlations of dijets is performed using 3 $\mu$b$^{-1}$ of Xe+Xe data at $\sqrt{s_{\mathrm{NN}}} = 5.44$ TeV collected with the ATLAS detector at the LHC. Dijets with jets reconstructed using the $R=0.4$ anti-$k_t$ algorithm are measured differentially in jet $p_{\text{T}}$ over the range of 32 GeV to 398 GeV and the centrality of the collisions. Significant dijet momentum imbalance is found in the most central Xe+Xe collisions, which decreases in more peripheral collisions. Results from the measurement of per-pair normalized and absolutely normalized dijet $p_{\text{T}}$ balance are compared with previous Pb+Pb measurements at $\sqrt{s_{\mathrm{NN}}} =5.02$ TeV. The differences between the dijet suppression in Xe+Xe and Pb+Pb are further quantified by the ratio of pair nuclear-modification factors. The results are found to be consistent with those measured in Pb+Pb data when compared in classes of the same event activity and when taking into account the difference between the center-of-mass energies of the initial parton scattering process in Xe+Xe and Pb+Pb collisions. These results should provide input for a better understanding of the role of energy density, system size, path length, and fluctuations in the parton energy loss.

62 data tables

The centrality intervals in Xe+Xe collisions and their corresponding TAA with absolute uncertainties.

The centrality intervals in Xe+Xe and Pb+Pb collisions for matching SUM ET FCAL intervals and respective TAA values for Xe+Xe collisions.

The performance of the jet energy scale (JES) for jets with $|y| < 2.1$ evaluated as a function of pT_truth in different centrality bins. Simulated hard scatter events were overlaid onto events from a dedicated sample of minimum-bias Xe+Xe data.

More…

Inclusive-photon production and its dependence on photon isolation in $pp$ collisions at $\sqrt s=13$ TeV using 139 fb$^{-1}$ of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 086, 2023.
Inspire Record 2628741 DOI 10.17182/hepdata.134100

Measurements of differential cross sections are presented for inclusive isolated-photon production in $pp$ collisions at a centre-of-mass energy of 13 TeV provided by the LHC and using 139 fb$^{-1}$ of data recorded by the ATLAS experiment. The cross sections are measured as functions of the photon transverse energy in different regions of photon pseudorapidity. The photons are required to be isolated by means of a fixed-cone method with two different cone radii. The dependence of the inclusive-photon production on the photon isolation is investigated by measuring the fiducial cross sections as functions of the isolation-cone radius and the ratios of the differential cross sections with different radii in different regions of photon pseudorapidity. The results presented in this paper constitute an improvement with respect to those published by ATLAS earlier: the measurements are provided for different isolation radii and with a more granular segmentation in photon pseudorapidity that can be exploited in improving the determination of the proton parton distribution functions. These improvements provide a more in-depth test of the theoretical predictions. Next-to-leading-order QCD predictions from JETPHOX and SHERPA and next-to-next-to-leading-order QCD predictions from NNLOJET are compared to the measurements, using several parameterisations of the proton parton distribution functions. The measured cross sections are well described by the fixed-order QCD predictions within the experimental and theoretical uncertainties in most of the investigated phase-space region.

48 data tables

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $|\eta^{\gamma}|<0.6$ and photon isolation cone radius $R=0.4$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.6<|\eta^{\gamma}|<0.8$ and photon isolation cone radius $R=0.4$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.8<|\eta^{\gamma}|<1.37$ and photon isolation cone radius $R=0.4$.

More…

Version 2
Search for long-lived, massive particles in events with displaced vertices and multiple jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 2306 (2023) 200, 2023.
Inspire Record 2628398 DOI 10.17182/hepdata.137762

A search for long-lived particles decaying into hadrons is presented. The analysis uses 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC using events that contain multiple energetic jets and a displaced vertex. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particles decaying in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are used to set limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and on scenarios with pair-production of supersymmetric particles with long-lived electroweakinos that decay via a small $R$-parity-violating coupling. The pair-production of electroweakinos with masses below 1.5 TeV is excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns. When produced in the decay of $m(\tilde{g})=2.4$ TeV gluinos, electroweakinos with $m(\tilde\chi^0_1)=1.5$ TeV are excluded with lifetimes in the range of 0.02 ns to 4 ns.

96 data tables

<b>Tables of Yields:</b> <a href="?table=validation_regions_yields_highpt_SR">Validation Regions Summary Yields, High-pT jet selections</a> <a href="?table=validation_regions_yields_trackless_SR">Validiation Regions Summary Yields, Trackless jet selections</a> <a href="?table=yields_highpt_SR_observed">Signal region (and sidebands) observed yields, High-pT jet selections</a> <a href="?table=yields_highpt_SR_expected">Signal region (and sidebands) expected yields, High-pT jet selections</a> <a href="?table=yields_trackless_SR_observed">Signal region (and sidebands) observed yields, Trackless jet selections</a> <a href="?table=yields_trackless_SR_expected">Signal region (and sidebands) expected yields, Trackless jet selections</a> <b>Exclusion Contours:</b> <a href="?table=excl_ewk_exp_nominal">EWK RPV signal; expected, nominal</a> <a href="?table=excl_ewk_exp_up">EWK RPV signal; expected, $+1\sigma$</a> <a href="?table=excl_ewk_exp_down">EWK RPV signal; expected, $-1\sigma$</a> <a href="?table=excl_ewk_obs_nominal">EWK RPV signal; observed, nominal</a> <a href="?table=excl_ewk_obs_up">EWK RPV signal; observed, $+1\sigma$</a> <a href="?table=excl_ewk_obs_down">EWK RPV signal; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $-1\sigma$</a> <a href="?table=excl_xsec_ewk">EWK RPV signal; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_xsec_strong_mgluino_2400">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_nominal">Strong RPV signal, $\tau$=0.01 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_exp_up">Strong RPV signal, $\tau$=0.01 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_down">Strong RPV signal, $\tau$=0.01 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_nominal">Strong RPV signal, $\tau$=0.01 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_obs_up">Strong RPV signal, $\tau$=0.01 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_down">Strong RPV signal, $\tau$=0.01 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_nominal">Strong RPV signal, $\tau$=0.10 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_exp_up">Strong RPV signal, $\tau$=0.10 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_down">Strong RPV signal, $\tau$=0.10 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_nominal">Strong RPV signal, $\tau$=0.10 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_obs_up">Strong RPV signal, $\tau$=0.10 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_down">Strong RPV signal, $\tau$=0.10 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_nominal">Strong RPV signal, $\tau$=1.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_1_ns_exp_up">Strong RPV signal, $\tau$=1.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_down">Strong RPV signal, $\tau$=1.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_nominal">Strong RPV signal, $\tau$=1.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_1_ns_obs_up">Strong RPV signal, $\tau$=1.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_down">Strong RPV signal, $\tau$=1.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_nominal">Strong RPV signal, $\tau$=10.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_10_ns_exp_up">Strong RPV signal, $\tau$=10.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_down">Strong RPV signal, $\tau$=10.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_nominal">Strong RPV signal, $\tau$=10.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_10_ns_obs_up">Strong RPV signal, $\tau$=10.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_down">Strong RPV signal, $\tau$=10.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_xsec_strong_chi0_1250">Strong RPV signal, m($\tilde{\chi}^0_1$)=1.25 TeV; cross-section limits for fixed lifetime values.</a> <br/><b>Reinterpretation Material:</b> See the attached resource (purple button on the left) or directly <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-08/hepdata_info.pdf">this link</a> for information about acceptance definition and about how to use the efficiency histograms below. SLHA files are also available in the reource page of this HEPData record. <a href="?table=acceptance_highpt_strong"> Acceptance cutflow, High-pT SR, Strong production.</a> <a href="?table=acceptance_trackless_ewk"> Acceptance cutflow, Trackless SR, EWK production.</a> <a href="?table=acceptance_trackless_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=acceptance_highpt_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=event_efficiency_HighPt_R_1150_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R &lt; 1150 mm</a> <a href="?table=event_efficiency_HighPt_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_HighPt_R_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R &gt; 3870 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R &lt; 1150 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_Trackless_R_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R &gt; 3870 mm</a> <a href="?table=vertex_efficiency_R_22_mm">Reinterpretation Material: Vertex-level Efficiency for R &lt; 22 mm</a> <a href="?table=vertex_efficiency_R_22_25_mm">Reinterpretation Material: Vertex-level Efficiency for R [22, 25] mm</a> <a href="?table=vertex_efficiency_R_25_29_mm">Reinterpretation Material: Vertex-level Efficiency for R [25, 29] mm</a> <a href="?table=vertex_efficiency_R_29_38_mm">Reinterpretation Material: Vertex-level Efficiency for R [29, 38] mm</a> <a href="?table=vertex_efficiency_R_38_46_mm">Reinterpretation Material: Vertex-level Efficiency for R [38, 46] mm</a> <a href="?table=vertex_efficiency_R_46_73_mm">Reinterpretation Material: Vertex-level Efficiency for R [46, 73] mm</a> <a href="?table=vertex_efficiency_R_73_84_mm">Reinterpretation Material: Vertex-level Efficiency for R [73, 84] mm</a> <a href="?table=vertex_efficiency_R_84_111_mm">Reinterpretation Material: Vertex-level Efficiency for R [84, 111] mm</a> <a href="?table=vertex_efficiency_R_111_120_mm">Reinterpretation Material: Vertex-level Efficiency for R [111, 120] mm</a> <a href="?table=vertex_efficiency_R_120_145_mm">Reinterpretation Material: Vertex-level Efficiency for R [120, 145] mm</a> <a href="?table=vertex_efficiency_R_145_180_mm">Reinterpretation Material: Vertex-level Efficiency for R [145, 180] mm</a> <a href="?table=vertex_efficiency_R_180_300_mm">Reinterpretation Material: Vertex-level Efficiency for R [180, 300] mm</a> <br/><b>Cutflow Tables:</b> <a href="?table=cutflow_highpt_strong"> Cutflow (Acceptance x Efficiency), High-pT SR, Strong production.</a> <a href="?table=cutflow_trackless_ewk"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production.</a> <a href="?table=cutflow_trackless_ewk_hf"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production with heavy-flavor quarks.</a> <a href="?table=cutflow_highpt_ewk_hf"> Cutflow (Acceptance x Efficiency), High-pT SR, EWK production with heavy-flavor quarks.</a>

Validation of background estimate in validation regions for the High-pT jet selections

Validation of background estimate in validation regions for the Trackless jet selections

More…

Search for flavor-changing neutral-current couplings between the top quark and the $Z$ boson with LHC Run 2 proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
Phys.Rev.D 108 (2023) 032019, 2023.
Inspire Record 2627201 DOI 10.17182/hepdata.145074

A search for flavor-changing neutral-current couplings between a top quark, an up or charm quark and a $Z$ boson is presented, using proton-proton collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS detector at the Large Hadron Collider. The analyzed dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The search targets both single-top-quark events produced as $gq\rightarrow tZ$ (with $q = u, c$) and top-quark-pair events, with one top quark decaying through the $t \rightarrow Zq$ channel. The analysis considers events with three leptons (electrons or muons), a $b$-tagged jet, possible additional jets, and missing transverse momentum. The data are found to be consistent with the background-only hypothesis and 95% confidence-level limits on the $t \rightarrow Zq$ branching ratios are set, assuming only tensor operators of the Standard Model effective field theory framework contribute to the $tZq$ vertices. These are $6.2 \times 10^{-5}$ ($13\times 10^{-5}$) for $t\rightarrow Zu$ ($t\rightarrow Zc$) for a left-handed $tZq$ coupling, and $6.6 \times 10^{-5}$ ($12\times 10^{-5}$) in the case of a right-handed coupling. These results are interpreted as 95% CL upper limits on the strength of corresponding couplings, yielding limits for $|C_{uW}^{(13)*}|$ and $|C_{uB}^{(13)*}|$ ($|C_{uW}^{(31)}|$ and $|C_{uB}^{(31)}|$) of 0.15 (0.16), and limits for $|C_{uW}^{(23)*}|$ and $|C_{uB}^{(23)*}|$ ($|C_{uW}^{(32)}|$ and $|C_{uB}^{(32)}|$) of 0.22 (0.21), assuming a new-physics energy scale $\Lambda_\text{NP}$ of 1 TeV.

18 data tables

Summary of the signal strength $\mu$ parameters obtained from the fits to extract LH and RH results for the FCNC tZu and tZc couplings. For the reference branching ratio, the most stringent limits are used.

Observed and expected 95% CL limits on the FCNC $t\rightarrow Zq$ branching ratios and the effective coupling strengths for different vertices and couplings (top eight rows). For the latter, the energy scale is assumed to be $\Lambda_{NP}$ = 1 TeV. The bottom rows show, for the case of the FCNC $t\rightarrow Zu$ branching ratio, the observed and expected 95% CL limits when only one of the two SRs, either SR1 or SR2, and all CRs are included in the likelihood.

Comparison between data and background prediction before the fit (Pre-Fit) for the mass of the SM top-quark candidate in SR1. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The four FCNC LH signals are also shown separately, normalized to five times the cross-section corresponding to the most stringent observed branching ratio limits. The first (last) bin in all distributions includes the underflow (overflow). The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).

More…

Determination of the strong coupling constant from transverse energy$-$energy correlations in multijet events at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 085, 2023.
Inspire Record 2625697 DOI 10.17182/hepdata.135073

Measurements of transverse energy$-$energy correlations and their associated azimuthal asymmetries in multijet events are presented. The analysis is performed using a data sample corresponding to 139 $\mbox{fb\(^{-1}\)}$ of proton$-$proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV, collected with the ATLAS detector at the Large Hadron Collider. The measurements are presented in bins of the scalar sum of the transverse momenta of the two leading jets and unfolded to particle level. They are then compared to next-to-next-to-leading-order perturbative QCD calculations for the first time, which feature a significant reduction in the theoretical uncertainties estimated using variations of the renormalisation and factorisation scales. The agreement between data and theory is good, thus providing a precision test of QCD at large momentum transfers $Q$. The strong coupling constant $\alpha_s$ is extracted differentially as a function of $Q$, showing a good agreement with the renormalisation group equation and with previous analyses. A simultaneous fit to all transverse energy$-$energy correlation distributions across different kinematic regions yields a value of $\alpha_\mathrm{s}(m_Z) = 0.1175 \pm 0.0006 \mbox{ (exp.)} ^{+0.0034}_{-0.0017} \mbox{ (theo.)}$, while the global fit to the asymmetry distributions yields $\alpha_{\mathrm{s}}(m_Z) = 0.1185 \pm 0.0009 \mbox{ (exp.)} ^{+0.0025}_{-0.0012} \mbox{ (theo.)}$.

50 data tables

Particle-level TEEC results

Particle-level TEEC results for the first HT2 bin

Particle-level TEEC results for the second HT2 bin

More…

Version 2
Search for a new Z' gauge boson in $4\mu$ events with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 090, 2023.
Inspire Record 2625676 DOI 10.17182/hepdata.130818

This paper presents a search for a new Z' vector gauge boson with the ATLAS experiment at the Large Hadron Collider using pp collision data collected at $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 139 fb$^{-1}$. The new gauge boson Z' is predicted by $L_{\mu}-L_{\tau}$ models to address observed phenomena that can not be explained by the Standard Model. The search examines the four-muon (4$\mu$) final state, using a deep learning neural network classifier to separate the Z' signal from the Standard Model background events. The di-muon invariant masses in the $4\mu$ events are used to extract the Z' resonance signature. No significant excess of events is observed over the predicted background. Upper limits at a 95% confidence level on the Z' production cross-section times the decay branching fraction of $pp \rightarrow Z'\mu\mu \rightarrow 4\mu$ are set from 0.31 to 4.3 fb for the Z' mass ranging from 5 to 81 GeV. The corresponding common coupling strengths, $g_{Z'}$, of the Z' boson to the second and third generation leptons above 0.003 - 0.2 have been excluded.

58 data tables

Summary of the chosen $Z'$ hypotheses and corresponding coupling, width, and cross-section (calculated at LO accuracy in QCD) at each mass point.

Summary of the chosen $Z'$ hypotheses and corresponding coupling, width, and cross-section (calculated at LO accuracy in QCD) at each mass point.

The $Z'$ signal event selection efficiencies compared to the events passing the previous cut level for several representative mass points. The overall signal efficiencies are the products of the 4$\mu$ MC filter and the combined event selection efficiencies.

More…

Search for a new scalar resonance in flavour-changing neutral-current top-quark decays $t \rightarrow qX$ ($q=u,c$), with $X \rightarrow b\bar{b}$, in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 199, 2023.
Inspire Record 2621899 DOI 10.17182/hepdata.132907

A search for flavour-changing neutral-current decays of a top quark into an up-type quark (either up or charm) and a light scalar particle $X$ decaying into a bottom anti-bottom quark pair is presented. The search focuses on top-quark pair production where one top quark decays to $qX$, with $X \rightarrow b\bar{b}$, and the other top quark decays according to the Standard Model, with the $W$ boson decaying leptonically. The final state is thus characterised by an isolated electron or muon and at least four jets. Events are categorised according to the multiplicity of jets and jets tagged as originating from $b$-quarks, and a neural network is used to discriminate between signal and background processes. The data analysed correspond to 139 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV, recorded with the ATLAS detector at the LHC. The 95% confidence-level upper limits between 0.019% and 0.062% are derived for the branching fraction $\mathcal{B}$($t \rightarrow uX$) and between 0.018% and 0.078% for the branching fraction $\mathcal{B}$($t \rightarrow cX$), for masses of the scalar particle $X$ between 20 and 160 GeV.

8 data tables

Expected and observed 95% CL upper limits for $\mathcal{B}$($t \rightarrow uX$) $\times$ $\mathcal{B}$($X \rightarrow b\bar{b}$). The bands surrounding the expected limits show the 68% and 95% confidence intervals, respectively.

Expected and observed 95% CL upper limits for $\mathcal{B}$($t \rightarrow cX$) $\times$ $\mathcal{B}$($X \rightarrow b\bar{b}$). The bands surrounding the expected limits show the 68% and 95% confidence intervals, respectively.

Expected and observed 95% CL upper limits for $\mathcal{B}$($t \rightarrow uH$) $\times$ $\mathcal{B}$($X \rightarrow b\bar{b}$) and $\mathcal{B}$($t \rightarrow cH$) $\times$ $\mathcal{B}$($X \rightarrow b\bar{b}$).

More…

Search for leptonic charge asymmetry in $t\bar{t}W$ production in final states with three leptons at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 033, 2023.
Inspire Record 2622249 DOI 10.17182/hepdata.140938

A search for the leptonic charge asymmetry ($A_\text{c}^{\ell}$) of top-quark$-$antiquark pair production in association with a $W$ boson ($t\bar{t}W$) is presented. The search is performed using final states with exactly three charged light leptons (electrons or muons) and is based on $\sqrt{s} = 13$ TeV proton$-$proton collision data collected with the ATLAS detector at the Large Hadron Collider at CERN during the years 2015$-$2018, corresponding to an integrated luminosity of 139 fb$^{-1}$. A profile-likelihood fit to the event yields in multiple regions corresponding to positive and negative differences between the pseudorapidities of the charged leptons from top-quark and top-antiquark decays is used to extract the charge asymmetry. At reconstruction level, the asymmetry is found to be $-0.123 \pm 0.136$ (stat.) $\pm \, 0.051$ (syst.). An unfolding procedure is applied to convert the result at reconstruction level into a charge-asymmetry value in a fiducial volume at particle level with the result of $-0.112 \pm 0.170$ (stat.) $\pm \, 0.054$ (syst.). The Standard Model expectations for these two observables are calculated using Monte Carlo simulations with next-to-leading-order plus parton shower precision in quantum chromodynamics and including next-to-leading-order electroweak corrections. They are $-0.084 \, ^{+0.005}_{-0.003}$ (scale) $\pm\, 0.006$ (MC stat.) and $-0.063 \, ^{+0.007}_{-0.004}$ (scale) $\pm\, 0.004$ (MC stat.) respectively, and in agreement with the measurements.

10 data tables

Measured values of the leptonic charge asymmetry ($A_c^{\ell}$) in ttW production in the three lepton channel. Results are given at reconstruction level and at particle level. Expected values are obtained using the Sherpa MC generator.

Definition of the fiducial phase space at particle level with the light lepton candidates $(\ell=e,\mu)$, jets ($j$) and invariant mass of the opposite sign same flavour lepton pair ($m_{OSSF}^{ll}$).

Correlation matrix between the Normalisation Factors and the Nuisance Parameters (NP) in the fit using using both statistical and systematic uncertainties to data in all analysis regions.

More…

Search for new physics in the $\tau$ lepton plus missing transverse momentum final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
JHEP 09 (2023) 051, 2023.
Inspire Record 2626189 DOI 10.17182/hepdata.135472

A search for physics beyond the standard model (SM) in the final state with a hadronically decaying tau lepton and a neutrino is presented. This analysis is based on data recorded by the CMS experiment from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to a total integrated luminosity of 138 fb$^{=1}$. The transverse mass spectrum is analyzed for the presence of new physics. No significant deviation from the SM prediction is observed. Limits are set on the production cross section of a W' boson decaying into a tau lepton and a neutrino. Lower limits are set on the mass of the sequential SM-like heavy charged vector boson and the mass of a quantum black hole. Upper limits are placed on the couplings of a new boson to the SM fermions. Constraints are put on a nonuniversal gauge interaction model and an effective field theory model. For the first time, upper limits on the cross section of $t$-channel leptoquark (LQ) exchange are presented. These limits are translated into exclusion limits on the LQ mass and on its coupling in the $t$-channel. The sensitivity of this analysis extends into the parameter space of LQ models that attempt to explain the anomalies observed in B meson decays. The limits presented for the various interpretations are the most stringent to date. Additionally, a model-independent limit is provided.

15 data tables

The transverse mass distribution of $ au$ leptons and missing transverse momentum observed in the Run-2 data (black dots with statistical uncertainty) as well as the expectation from SM processes (stacked histograms). Different signal hypotheses normalized to 10 fb$^{-1}$ are illustrated as dashed lines for exemplary SSM W$\prime$ boson, QBH and EFT signal hypotheses. The ratios of the background-subtracted data yields to the expected background yields are presented in the lower panel. The combined statistical and systematic uncertainties in the background are represented by the grey shaded band in the ratio panel.

Bayesian upper exclusion limits at 95% CL on the product of the cross section and branching fraction of a W$\prime$ boson decaying to a $\tau$ lepton and a neutrino in the SSM model. For this model, W$\prime$ boson masses of up to 4.8 TeV can be excluded. The limit is given by the intersection of the observed (solid) limit and the theoretical cross section (blue dotted curve). The 68 and 95% quantiles of the limits are represented by the green and yellow bands, respectively. The $\sigma \mathcal{B}$ for an SSM W' boson, along with its associated uncertainty, calculated at NNLO precision in QCD is shown.

Bayesian 95% CL model-independent upper limit on the product of signal cross sections and branching fraction for the $\tau+\nu$ decay for a back-to-back $\tau$ lepton plus $p_{T}^{miss}$ topology. To calculate this limit, all events for signal, background, and data are summed starting from a minimum $m_{T}$ threshold and then divided by the total number of events. No assumption on signal shape is included in this limit. The expected (dashed line) and observed (solid line) limits are shown as well as the 68% and 95% CL uncertainty bands (green and yellow, respectively).

More…

Version 2
Measurements of $Z\gamma+$jets differential cross sections in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 072, 2023.
Inspire Record 2614196 DOI 10.17182/hepdata.135460

Differential cross-section measurements of $Z\gamma$ production in association with hadronic jets are presented, using the full 139 fb$^{-1}$ dataset of $\sqrt{s}=13$ TeV proton-proton collisions collected by the ATLAS detector during Run 2 of the LHC. Distributions are measured using events in which the $Z$ boson decays leptonically and the photon is usually radiated from an initial-state quark. Measurements are made in both one and two observables, including those sensitive to the hard scattering in the event and others which probe additional soft and collinear radiation. Different Standard Model predictions, from both parton-shower Monte Carlo simulation and fixed-order QCD calculations, are compared with the measurements. In general, good agreement is observed between data and predictions from MATRIX and MiNNLO$_\text{PS}$, as well as next-to-leading-order predictions from MadGraph5_aMC@NLO and Sherpa.

100 data tables

Measured differential cross section as a function of observable $ p_{T}^{ll}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).

Measured differential cross section as a function of observable $ p_{T}^{ll}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).

Measured differential cross section as a function of observable $ p_{T}^{ll} - p_{T}^{\gamma}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).

More…

Measurement of the $CP$ properties of Higgs boson interactions with $\tau$-leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 563, 2023.
Inspire Record 2613280 DOI 10.17182/hepdata.131601

A study of the charge conjugation and parity ($CP$) properties of the interaction between the Higgs boson and $\tau$-leptons is presented. The study is based on a measurement of $CP$-sensitive angular observables defined by the visible decay products of $\tau$-lepton decays, where at least one hadronic decay is required. The analysis uses 139 fb$^{-1}$ of proton$-$proton collision data recorded at a centre-of-mass energy of $\sqrt{s}= 13$ TeV with the ATLAS detector at the Large Hadron Collider. Contributions from $CP$-violating interactions between the Higgs boson and $\tau$-leptons are described by a single mixing angle parameter $\phi_{\tau}$ in the generalised Yukawa interaction. Without assuming the Standard Model hypothesis for the $H\rightarrow\tau\tau$ signal strength, the mixing angle $\phi_{\tau}$ is measured to be $9^{\circ} \pm 16^{\circ}$, with an expected value of $0^{\circ} \pm 28^{\circ}$ at the 68% confidence level. The pure $CP$-odd hypothesis is disfavoured at a level of 3.4 standard deviations. The results are compatible with the predictions for the Higgs boson in the Standard Model.

5 data tables

Observed 1-D likelihood scan of the $CP$-mixing angle $\phi_{\tau}$.

Expected 1-D likelihood scan of the $CP$-mixing angle $\phi_{\tau}$.

Observed 2-D likelihood scan of the signal strength $\mu_{\tau\tau}$ versus the $CP$-mixing angle $\phi_{\tau}$.

More…

Search for pair-produced vector-like top and bottom partners in events with large missing transverse momentum in pp collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 719, 2023.
Inspire Record 2613270 DOI 10.17182/hepdata.137656

A search for pair-produced vector-like quarks using events with exactly one lepton ($e$ or $\mu$), at least four jets including at least one $b$-tagged jet, and large missing transverse momentum is presented. Data from proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV, recorded by the ATLAS detector at the LHC from 2015 to 2018 and corresponding to an integrated luminosity of 139 fb$^{-1}$, are analysed. Vector-like partners $T$ and $B$ of the top and bottom quarks are considered, as is a vector-like $X$ with charge +5/3, assuming their decay into a $W$, $Z$, or Higgs boson and a third-generation quark. No significant deviations from the Standard Model expectation are observed. Upper limits on the production cross-section of $T$ and $B$ quark pairs as a function of their mass are derived for various decay branching ratio scenarios. The strongest lower limits on the masses are 1.59 TeV assuming mass-degenerate VLQs and branching ratios corresponding to the weak-isospin doublet model, and 1.47 TeV (1.46 TeV) for exclusive $T \rightarrow Zt$ ($B/X \rightarrow Wt$) decays. In addition, lower limits on the $T$ and $B$ quark masses are derived for all possible branching ratios.

10 data tables

Expected and observed upper limits at 95% CL on the cross section of vector-like quark pair production for $T\bar{T}$ and $\mathcal{B}(T\rightarrow Zt) = 100$%.

Expected and observed upper limits at 95% CL on the cross section of vector-like quark pair production for $B\bar{B}$ and $\mathcal{B}(B\rightarrow Wt) = 100$%.

Expected and observed upper limits at 95% CL on the cross section of vector-like quark pair production for $T\bar{T}$ in the singlet model.

More…

Measurement of exclusive pion pair production in proton-proton collisions at $\sqrt{s}=$7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 627, 2023.
Inspire Record 2606496 DOI 10.17182/hepdata.131222

The exclusive production of pion pairs in the process $pp\to pp\pi^+\pi^-$ has been measured at $\sqrt{s}$ = 7 TeV with the ATLAS detector at the LHC, using 80 $\mu$b$^{-1}$ of low-luminosity data. The pion pairs were detected in the ATLAS central detector while outgoing protons were measured in the forward ATLAS ALFA detector system. This represents the first use of proton tagging to measure an exclusive hadronic final state at the LHC. A cross-section measurement is performed in two kinematic regions defined by the proton momenta, the pion rapidities and transverse momenta, and the pion-pion invariant mass. Cross section values of $4.8 \pm 1.0 \text{(stat.)} + {}^{+0.3}_{-0.2} \text{(syst.)}\mu$b and $9 \pm 6 \text{(stat.)} + {}^{+2}_{-2}\text{(syst.)}\mu$b are obtained in the two regions; they are compared with theoretical models and provide a demonstration of the feasibility of measurements of this type.

1 data table

The measured fiducial cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity


Charged-hadron production in $pp$, $p$+Pb, Pb+Pb, and Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 074, 2023.
Inspire Record 2601282 DOI 10.17182/hepdata.135676

This paper presents measurements of charged-hadron spectra obtained in $pp$, $p$+Pb, and Pb+Pb collisions at $\sqrt{s}$ or $\sqrt{s_{_\text{NN}}}=5.02$ TeV, and in Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5.44$ TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb${}^{-1}$, 28 nb${}^{-1}$, 0.50 nb${}^{-1}$, and 3 $\mu$b${}^{-1}$, respectively. The nuclear modification factors $R_{p\text{Pb}}$ and $R_\text{AA}$ are obtained by comparing the spectra in heavy-ion and $pp$ collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor $R_{p\text{Pb}}$ shows a moderate enhancement above unity with a maximum at $p_{\mathrm{T}} \approx 3$ GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct $p_{\mathrm{T}}$-dependence with a local maximum at $p_{\mathrm{T}} \approx 2$ GeV and a local minimum at $p_{\mathrm{T}} \approx 7$ GeV. This dependence is more distinguishable in more central collisions. No significant $|\eta|$-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe $R_\text{AA}$ better in central collisions and in the $p_{\mathrm{T}}$ range from about 10 to 100 GeV.

140 data tables

- - - - - - - - - - - - - - - - - - - - <br><b>charged-hadron spectra:</b> <br><i>pp reference:</i>&nbsp;&nbsp; <a href="?version=1&table=Table1">for p+Pb</a>&nbsp;&nbsp; <a href="?version=1&table=Table10">for Pb+Pb</a>&nbsp;&nbsp; <a href="?version=1&table=Table19">for Xe+Xe</a>&nbsp;&nbsp; <br><i>p+Pb:</i>&nbsp;&nbsp; <a href="?version=1&table=Table2">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table3">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table4">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table5">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table6">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table7">40-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table8">60-90%</a>&nbsp;&nbsp; <a href="?version=1&table=Table9">0-90%</a>&nbsp;&nbsp; <br><i>Pb+Pb:</i>&nbsp;&nbsp; <a href="?version=1&table=Table11">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table12">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table13">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table14">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table15">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table16">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table17">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table18">60-80%</a>&nbsp;&nbsp; <br><i>Xe+Xe:</i>&nbsp;&nbsp; <a href="?version=1&table=Table20">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table21">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table22">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table23">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table24">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table25">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table26">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table27">60-80%</a>&nbsp;&nbsp; </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (p<sub>T</sub>):</b> <br><i>R<sub>pPb</sub>:</i>&nbsp;&nbsp; <a href="?version=1&table=Table28">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table29">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table30">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table31">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table32">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table33">40-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table34">60-90%</a>&nbsp;&nbsp; <a href="?version=1&table=Table35">0-90%</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Pb+Pb):</i>&nbsp;&nbsp; <a href="?version=1&table=Table36">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table37">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table38">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table39">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table40">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table41">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table42">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table43">60-80%</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Xe+Xe):</i>&nbsp;&nbsp; <a href="?version=1&table=Table44">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table45">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table46">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table47">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table48">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table49">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table50">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table51">60-80%</a>&nbsp;&nbsp; </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (y*/eta):</b> <br><i>R<sub>pPb</sub>:</i> <br>&nbsp;&nbsp;0-5%:&nbsp;&nbsp; <a href="?version=1&table=Table52">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table53">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table54">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table55">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;5-10%:&nbsp;&nbsp; <a href="?version=1&table=Table56">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table57">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table58">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table59">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;10-20%:&nbsp;&nbsp; <a href="?version=1&table=Table60">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table61">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table62">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table63">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;20-30%:&nbsp;&nbsp; <a href="?version=1&table=Table64">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table65">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table66">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table67">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;30-40%:&nbsp;&nbsp; <a href="?version=1&table=Table68">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table69">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table70">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table71">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;40-60%:&nbsp;&nbsp; <a href="?version=1&table=Table72">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table73">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table74">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table75">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;60-90%:&nbsp;&nbsp; <a href="?version=1&table=Table76">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table77">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table78">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table79">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;0-90%:&nbsp;&nbsp; <a href="?version=1&table=Table80">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table81">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table82">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table83">15.1-17.3GeV</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Pb+Pb):</i> <br>&nbsp;&nbsp;0-5%:&nbsp;&nbsp; <a href="?version=1&table=Table84">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table85">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table86">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table87">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;5-10%:&nbsp;&nbsp; <a href="?version=1&table=Table88">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table89">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table90">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table91">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;10-20%:&nbsp;&nbsp; <a href="?version=1&table=Table92">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table93">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table94">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table95">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;20-30%:&nbsp;&nbsp; <a href="?version=1&table=Table96">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table97">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table98">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table99">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;30-40%:&nbsp;&nbsp; <a href="?version=1&table=Table100">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table101">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table102">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table103">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;40-50%:&nbsp;&nbsp; <a href="?version=1&table=Table104">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table105">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table106">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table107">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;50-60%:&nbsp;&nbsp; <a href="?version=1&table=Table108">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table109">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table110">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table111">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;60-80%:&nbsp;&nbsp; <a href="?version=1&table=Table112">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table113">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table114">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table115">60-95GeV</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Xe+Xe):</i> <br>&nbsp;&nbsp;0-5%:&nbsp;&nbsp; <a href="?version=1&table=Table116">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table117">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table118">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;5-10%:&nbsp;&nbsp; <a href="?version=1&table=Table119">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table120">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table121">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;10-20%:&nbsp;&nbsp; <a href="?version=1&table=Table122">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table123">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table124">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;20-30%:&nbsp;&nbsp; <a href="?version=1&table=Table125">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table126">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table127">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;30-40%:&nbsp;&nbsp; <a href="?version=1&table=Table128">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table129">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table130">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;40-50%:&nbsp;&nbsp; <a href="?version=1&table=Table131">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table132">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table133">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;50-60%:&nbsp;&nbsp; <a href="?version=1&table=Table134">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table135">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table136">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;60-80%:&nbsp;&nbsp; <a href="?version=1&table=Table137">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table138">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table139">20-23GeV</a>&nbsp;&nbsp; <br>- - - - - - - - - - - - - - - - - - - -

Charged-hadron cross-section in pp collisions. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.

Charged-hadron spectrum in the centrality interval 0-5% for p+Pb, divided by &#9001;TPPB&#9002;. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.

More…

Measurement of $Z\gamma\gamma$ production in $pp$ collisions at $\sqrt{s}= 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 539, 2023.
Inspire Record 2593322 DOI 10.17182/hepdata.132903

Cross-sections for the production of a $Z$ boson in association with two photons are measured in proton$-$proton collisions at a centre-of-mass energy of 13 TeV. The data used correspond to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS experiment during Run 2 of the LHC. The measurements use the electron and muon decay channels of the $Z$ boson, and a fiducial phase-space region where the photons are not radiated from the leptons. The integrated $Z(\rightarrow\ell\ell)\gamma\gamma$ cross-section is measured with a precision of 12% and differential cross-sections are measured as a function of six kinematic variables of the $Z\gamma\gamma$ system. The data are compared with predictions from MC event generators which are accurate to up to next-to-leading order in QCD. The cross-section measurements are used to set limits on the coupling strengths of dimension-8 operators in the framework of an effective field theory.

16 data tables

Measured fiducial-level integrated cross-section. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

Measured unfolded differential cross-section as a function of the leading photon transverse energy $E^{\gamma1}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

Measured unfolded differential cross-section as a function of the subleading photon transverse energy $E^{\gamma2}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

More…

Search for dark matter produced in association with a single top quark and an energetic $W$ boson in $\sqrt{s}=$ 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 83 (2023) 603, 2023.
Inspire Record 2514114 DOI 10.17182/hepdata.136029

This paper presents a search for dark matter, $\chi$, using events with a single top quark and an energetic $W$ boson. The analysis is based on proton-proton collision data collected with the ATLAS experiment at $\sqrt{s}=$ 13 TeV during LHC Run 2 (2015-2018), corresponding to an integrated luminosity of 139 fb$^{-1}$. The search considers final states with zero or one charged lepton (electron or muon), at least one $b$-jet and large missing transverse momentum. In addition, a result from a previous search considering two-charged-lepton final states is included in the interpretation of the results. The data are found to be in good agreement with the Standard Model predictions and the results are interpreted in terms of 95% confidence-level exclusion limits in the context of a class of dark matter models involving an extended two-Higgs-doublet sector together with a pseudoscalar mediator particle. The search is particularly sensitive to on-shell production of the charged Higgs boson state, $H^{\pm}$, arising from the two-Higgs-doublet mixing, and its semi-invisible decays via the mediator particle, $a$: $H^{\pm} \rightarrow W^\pm a (\rightarrow \chi\chi)$. Signal models with $H^{\pm}$ masses up to 1.5 TeV and $a$ masses up to 350 GeV are excluded assuming a tan$\beta$ value of 1. For masses of $a$ of 150 (250) GeV, tan$\beta$ values up to 2 are excluded for $H^{\pm}$ masses between 200 (400) GeV and 1.5 TeV. Signals with tan$\beta$ values between 20 and 30 are excluded for $H^{\pm}$ masses between 500 and 800 GeV.

161 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=highst_mamh_obs">Combined sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=highst_mamh_exp">Combined sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=highst_mhtb_lowma_obs">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=highst_mhtb_lowma_exp">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=highst_mhtb_highma_obs">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=highst_mhtb_highma_exp">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=lowst_mamh_obs">Combined sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=lowst_mamh_exp">Combined sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=lowst_mhtb_lowma_obs">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=lowst_mhtb_lowma_exp">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=lowst_mhtb_highma_obs">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=lowst_mhtb_highma_exp">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_mamh_obs">0L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_mamh_exp">0L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_mhtb_lowma_obs">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_mhtb_lowma_exp">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_mhtb_highma_obs">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_mhtb_highma_exp">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_mamh_obs">0L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_mamh_exp">0L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_mhtb_lowma_obs">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_mhtb_lowma_exp">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_mhtb_highma_obs">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_mhtb_highma_exp">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_mamh_obs">1L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_mamh_exp">1L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_mhtb_lowma_obs">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_mhtb_lowma_exp">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_mhtb_highma_obs">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_mhtb_highma_exp">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_mamh_obs">1L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_mamh_exp">1L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_mhtb_lowma_obs">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_mhtb_lowma_exp">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_mhtb_highma_exp">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_highst_mamh_obs">2L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=2L_highst_mamh_exp">2L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_highst_mhtb_lowma_obs">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=2L_highst_mhtb_lowma_exp">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_highst_mhtb_highma_obs">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=2L_highst_mhtb_highma_exp">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_lowst_mamh_exp">2L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_lowst_mhtb_lowma_exp">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_lowst_mhtb_highma_exp">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=highst_dmtt_mamh_obs">Combined sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=highst_dmtt_mamh_exp">Combined sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=highst_dmtt_mhtb_lowma_obs">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=highst_dmtt_mhtb_lowma_exp">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=highst_dmtt_mhtb_highma_obs">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=highst_dmtt_mhtb_highma_exp">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=lowst_dmtt_mamh_obs">Combined sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=lowst_dmtt_mamh_exp">Combined sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=lowst_dmtt_mhtb_lowma_obs">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=lowst_dmtt_mhtb_lowma_exp">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=lowst_dmtt_mhtb_highma_obs">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=lowst_dmtt_mhtb_highma_exp">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mamh_obs">0L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mamh_exp">0L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mhtb_lowma_obs">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mhtb_lowma_exp">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mhtb_highma_obs">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mhtb_highma_exp">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mamh_obs">0L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mamh_exp">0L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mhtb_lowma_obs">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mhtb_lowma_exp">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mhtb_highma_obs">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mhtb_highma_exp">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mamh_obs">1L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mamh_exp">1L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mhtb_lowma_obs">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mhtb_lowma_exp">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mhtb_highma_obs">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mhtb_highma_exp">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mamh_obs">1L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mamh_exp">1L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mhtb_lowma_obs">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mhtb_lowma_exp">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mhtb_highma_obs">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mhtb_highma_exp">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_highst_dmtt_mamh_obs">2L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_highst_dmtt_mamh_exp">2L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_highst_dmtt_mhtb_lowma_obs">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_highst_dmtt_mhtb_lowma_exp">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_highst_dmtt_mhtb_highma_obs">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_highst_dmtt_mhtb_highma_exp">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_lowst_dmtt_mamh_exp">2L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_lowst_dmtt_mhtb_lowma_obs">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_lowst_dmtt_mhtb_lowma_exp">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_lowst_dmtt_mhtb_highma_obs">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_lowst_dmtt_mhtb_highma_exp">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=mamH_xSecUpperLimit_Comb_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_Comb_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_Comb_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_Comb_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_Comb_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_Comb_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_Comb_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_Comb_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_Comb_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_Comb_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_Comb_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_Comb_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_0L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_0L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_0L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_0L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.7) cross-sections from 0L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_0L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_0L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_0L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_0L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_0L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_0L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.35) cross-sections from 0L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_0L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_0L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_1L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_1L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_1L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_1L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.7) cross-sections from 1L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_1L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_1L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_1L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_1L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_1L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_1L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.35) cross-sections from 1L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_1L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_1L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SR0L_mwtagged">0L region m(b1,W-tagged)</a> <li><a href="?table=SR0L_mtbmet">0L region m_{\mathrm{T}}^{\mathrm{b,E_{\mathrm{T}^{\mathrm{miss}}}}}</a> <li><a href="?table=SR0L_nwtagged">0L region N_{\mathrm{W-tagged}}</a> <li><a href="?table=SR1L_Had_mbj">1L hadronic top $m_{\mathrm{b1},\mathrm{\cancel{b1}}}$</a> <li><a href="?table=SR1L_Lep_mbj">1L leptonic top $m_{\mathrm{b1},\mathrm{\cancel{b1}}}$</a> <li><a href="?table=SR1L_Lep_nwtaggged">1L leptonic top region N_{\mathrm{W-tagged}}</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow_SR0L">Cutflow of 4 signal points in the 0L regions.</a> <li><a href="?table=cutflow_SR1L_Had">Cutflow of 4 signal points in the 1L hadronic top regions.</a> <li><a href="?table=cutflow_SR1L_Lep">Cutflow of 4 signal points in the 1L leptonic top region.</a> </ul> <b>Acceptance and efficiencies:</b> <ul> <li> <b>highst_grid1_0L:</b> <a href="?table=highst_grid1_Acc_0L">Acceptance table of the 0L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <a href="?table=highst_grid1_Eff_0L">Efficiency table of the 0L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <li> <b>highst_grid2_0L:</b> <a href="?table=highst_grid2_Acc_0L">Acceptance table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <a href="?table=highst_grid2_Eff_0L">Efficiency table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <li> <b>highst_grid3_0L:</b> <a href="?table=highst_grid3_Acc_0L">Acceptance table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <a href="?table=highst_grid3_Eff_0L">Efficiency table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <li> <b>highst_grid1_1L:</b> <a href="?table=highst_grid1_Acc_1L">Acceptance table of the 1L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <a href="?table=highst_grid1_Eff_1L">Efficiency table of the 1L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <li> <b>highst_grid2_1L:</b> <a href="?table=highst_grid2_Acc_1L">Acceptance table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <a href="?table=highst_grid2_Eff_1L">Efficiency table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <li> <b>highst_grid3_1L:</b> <a href="?table=highst_grid3_Acc_1L">Acceptance table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <a href="?table=highst_grid3_Eff_1L">Efficiency table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <li> <b>lowst_grid1_0L:</b> <a href="?table=lowst_grid1_Acc_0L">Acceptance table of the 0L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <a href="?table=lowst_grid1_Eff_0L">Efficiency table of the 0L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <li> <b>lowst_grid2_0L:</b> <a href="?table=lowst_grid2_Acc_0L">Acceptance table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <a href="?table=lowst_grid2_Eff_0L">Efficiency table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <li> <b>lowst_grid3_0L:</b> <a href="?table=lowst_grid3_Acc_0L">Acceptance table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <a href="?table=lowst_grid3_Eff_0L">Efficiency table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <li> <b>lowst_grid1_1L:</b> <a href="?table=lowst_grid1_Acc_1L">Acceptance table of the 1L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <a href="?table=lowst_grid1_Eff_1L">Efficiency table of the 1L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <li> <b>lowst_grid2_1L:</b> <a href="?table=lowst_grid2_Acc_1L">Acceptance table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <a href="?table=lowst_grid2_Eff_1L">Efficiency table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <li> <b>lowst_grid3_1L:</b> <a href="?table=lowst_grid3_Acc_1L">Acceptance table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <a href="?table=lowst_grid3_Eff_1L">Efficiency table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> </ul> <b>Truth Code snippets</b> are available under "Resources" (purple button on the left)

The observed exclusion contour at 95% CL as a function of the $m_a$ vs. $m_{H^{\pm}}$ and assuming tan$\beta$ = 1, $m_{\mathrm{DM}} = 10 \mathrm{GeV}$, $g_{\chi} = 1$ and sin$\theta = 0.7$. Masses that are within the contours are excluded. Only signals simulating the tW+DM final states are considered in this contour.

The expected exclusion contour at 95% CL as a function of the $m_a$ vs. $m_{H^{\pm}}$ and assuming tan$\beta$ = 1, $m_{\mathrm{DM}} = 10 \mathrm{GeV}$, $g_{\chi} = 1$ and sin$\theta = 0.7$. Masses that are within the contours are excluded. Only signals simulating the tW+DM final states are considered in this contour.

More…

Version 2
Search for supersymmetry in final states with missing transverse momentum and three or more $b$-jets in 139 fb$^{-1}$ of proton$-$proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 561, 2023.
Inspire Record 2182381 DOI 10.17182/hepdata.95928

A search for supersymmetry involving the pair production of gluinos decaying via off-shell third-generation squarks into the lightest neutralino ($\tilde\chi^0_1$) is reported. It exploits LHC proton$-$proton collision data at a centre-of-mass energy $\sqrt{s} = 13$ TeV with an integrated luminosity of 139 fb$^{-1}$ collected with the ATLAS detector from 2015 to 2018. The search uses events containing large missing transverse momentum, up to one electron or muon, and several energetic jets, at least three of which must be identified as containing $b$-hadrons. Both a simple kinematic event selection and an event selection based upon a deep neural-network are used. No significant excess above the predicted background is found. In simplified models involving the pair production of gluinos that decay via off-shell top (bottom) squarks, gluino masses less than 2.44 TeV (2.35 TeV) are excluded at 95% CL for a massless $\tilde\chi^0_1$. Limits are also set on the gluino mass in models with variable branching ratios for gluino decays to $b\bar{b}\tilde\chi^0_1$, $t\bar{t}\tilde\chi^0_1$ and $t\bar{b}\tilde\chi^-_1$ / $\bar{t}b\tilde\chi^+_1$.

276 data tables

A summary of the uncertainties in the background estimates for SR-Gtt-0L-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.

A summary of the uncertainties in the background estimates for SR-Gtt-0L-B. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.

A summary of the uncertainties in the background estimates for SR-Gtt-0L-M1. The individual experimental and theoretical uncertainties are assumed to be uncorrelated and are combined by adding in quadrature.

More…

Search for doubly charged Higgs boson production in multi-lepton final states using 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 605, 2023.
Inspire Record 2181753 DOI 10.17182/hepdata.138987

A search for pair production of doubly charged Higgs bosons ($H^{\pm \pm}$), each decaying into a pair of prompt, isolated, highly energetic leptons with the same electric charge, is presented. The search uses a proton-proton collision data sample at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. This analysis focuses on same-charge leptonic decays, $H^{\pm \pm} \rightarrow \ell^{\pm} \ell^{\prime \pm}$ where $\ell, \ell^\prime=e, \mu, \tau$, in two-, three-, and four-lepton channels, but only considers final states which include electrons or muons. No evidence of a signal is observed. Corresponding limits on the production cross-section and consequently a lower limit on $m(H^{\pm \pm})$ are derived at 95% confidence level. Assuming that the branching ratios to each of the possible leptonic final states are equal, $\mathcal{B}(H^{\pm \pm} \rightarrow e^\pm e^\pm) = \mathcal{B}(H^{\pm \pm} \rightarrow e^\pm \mu^\pm) = \mathcal{B}(H^{\pm \pm} \rightarrow \mu^\pm \mu^\pm) = \mathcal{B}(H^{\pm \pm} \rightarrow e^\pm \tau^\pm) = \mathcal{B}(H^{\pm \pm} \rightarrow \mu^\pm \tau^\pm) = \mathcal{B}(H^{\pm \pm} \rightarrow \tau^\pm \tau^\pm) = 1/6$, the observed lower limit on the mass of a doubly charged Higgs boson is 1080 GeV within the left-right symmetric type-II seesaw model, which is an improvement over previous limits. Additionally, a lower limit of $m(H^{\pm \pm})$ = 900 GeV is obtained in the context of the Zee-Babu neutrino mass model.

12 data tables

LO, NLO cross-sections and K-factors for the pair-production of doubly charged Higgs bosons in pp collisions at $\sqrt{s}$ = 13 TeV. The K-factors (K=$\sigma_{NLO}/\sigma_{LO}$) are identical for $H^{\pm\pm}_L$, $H^{\pm\pm}_R$, and $k^{\pm\pm}$. The values are calculated using the NNPDF3.1NLO and NNPDF2.3LO PDF sets.

Observed (solid line) and expected (dashed line) 95% CL upper limits on the $H^{\pm\pm}$ pair production cross-section as a function of $m(H^{\pm\pm})$ resulting from the combination of all analysis channels, assuming $\sum_{\ell \ell^\prime} \mathcal{B}(H^{\pm\pm} \rightarrow \ell^{\pm} \ell^{\prime \pm})=100%$, where $\ell, \ell^\prime = e, \mu, \tau$.

Distribution of $m(e^{\pm},e^{\pm})_{\mathrm{lead}}$ in the electron-electron signal region after the background-only fit.

More…

Search for dark matter produced in association with a dark Higgs boson decaying into $W^{+}W^{-}$ in the one-lepton final state at $\sqrt{s}$=13 TeV using 139 fb$^{-1}$ of $pp$ collisions recorded with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 07 (2023) 116, 2023.
Inspire Record 2181868 DOI 10.17182/hepdata.132484

Several extensions of the Standard Model predict the production of dark matter particles at the LHC. A search for dark matter particles produced in association with a dark Higgs boson decaying into $W^{+}W^{-}$ in the $\ell^\pm\nu q \bar q'$ final states with $\ell=e,\mu$ is presented. This analysis uses 139 fb$^{-1}$ of $pp$ collisions recorded by the ATLAS detector at a centre-of-mass energy of 13 TeV. The $W^\pm \to q\bar q'$ decays are reconstructed from pairs of calorimeter-measured jets or from track-assisted reclustered jets, a technique aimed at resolving the dense topology from a pair of boosted quarks using jets in the calorimeter and tracking information. The observed data are found to agree with Standard Model predictions. Scenarios with dark Higgs boson masses ranging between 140 and 390 GeV are excluded.

25 data tables

Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>&beta;=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=500 GeV, with the preselections applied.

Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>&beta;=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1000 GeV, with the preselections applied.

Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>&beta;=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1700 GeV, with the preselections applied.

More…

Constraints on spin-0 dark matter mediators and invisible Higgs decays using ATLAS 13 TeV $pp$ collision data with two top quarks and missing transverse momentum in the final state

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 503, 2023.
Inspire Record 2180393 DOI 10.17182/hepdata.129623

This paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a $b$-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in $pp$ collisions at the LHC, using 139 fb$^{-\text{1}}$ of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the Standard Model in association with a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30$^{+\text{0.13}}_{-\text{0.09}}$) is observed (expected) at 95% confidence level.

40 data tables

Post-fit signal region yields for the tt0L-high and the tt0L-low analyses. The bottom panel shows the statistical significance of the difference between the SM prediction and the observed data in each region. '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.

Representative fit distribution in the signal region for the tt1L analysis: each bin of such distribution corresponds to a single SR included in the fit. 'Other' includes contributions from $t\bar{t}W$, $tZ$, $tWZ$ and $t\bar{t}$ (semileptonic) processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.

Representative fit distribution in the same flavour leptons signal region for the tt2L analysis: each bin of such distribution, starting from the red arrow, corresponds to a single SR included in the fit. 'FNP' includes the contribution from fake/non-prompt lepton background arising from jets (mainly $\pi/K$, heavy-flavour hadron decays and photon conversion) misidentified as leptons, estimated in a purely data-driven way. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.

More…

Search for boosted diphoton resonances in the 10 to 70 GeV mass range using 138 fb$^{-1}$ of 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 155, 2023.
Inspire Record 2178061 DOI 10.17182/hepdata.131600

A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on $pp$ collision data corresponding to an integrated luminosity of 138 fb$^{-1}$ at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV.

7 data tables

The expected and observed upper limits at 95\% CL on the fiducial cross-section times branching ratio to two photons of a narrow-width ($\Gamma_{X}$ = 4 MeV) scalar resonance as a function of its mass $m_{X}$.

Diphoton invariant mass in the signal region using a 0.1 GeV binning.

Parametrization of the $C_{X}$ factor, defined as the ratio between the number of reconstructed signal events passing the analysis cuts and the number of signal events at the particle level generated within the fiducial volume, as function of $m_{X}$ obtained from the narrow width simulated signal samples produced in gluon fusion.

More…

A search for heavy Higgs bosons decaying into vector bosons in same-sign two-lepton final states in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 200, 2023.
Inspire Record 2176695 DOI 10.17182/hepdata.129285

A search for heavy Higgs bosons produced in association with a vector boson and decaying into a pair of vector bosons is performed in final states with two leptons (electrons or muons) of the same electric charge, missing transverse momentum and jets. A data sample of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb$^{-1}$. The observed data are in agreement with Standard Model background expectations. The results are interpreted using higher-dimensional operators in an effective field theory. Upper limits on the production cross-section are calculated at 95% confidence level as a function of the heavy Higgs boson's mass and coupling strengths to vector bosons. Limits are set in the Higgs boson mass range from 300 to 1500 GeV, and depend on the assumed couplings. The highest excluded mass for a heavy Higgs boson with the coupling combinations explored is 900 GeV. Limits on coupling strengths are also provided.

16 data tables

Comparison between data and SM predictions for the meff distributions in the boosted SR. The background predictions are obtained through a background-only simultaneous fit and are shown as filled histograms. The entries in overflow are included in the last bin. The size of the combined statistical and systematic uncertainty for the sum of the fitted background is indicated by the hatched band. The ratio of the data to the sum of the fitted background is shown in the lower panel. Two benchmark signal samples, as indicated in the legend, are also shown as unstacked unfilled histograms normalised to the integrated luminosity of the data using the theoretical cross-sections.

Comparison between data and SM predictions for the meff distributions in the resolved SR. The background predictions are obtained through a background-only simultaneous fit and are shown as filled histograms. The entries in overflow are included in the last bin. The size of the combined statistical and systematic uncertainty for the sum of the fitted background is indicated by the hatched band. The ratio of the data to the sum of the fitted background is shown in the lower panel. Two benchmark signal samples, as indicated in the legend, are also shown as unstacked unfilled histograms normalised to the integrated luminosity of the data using the theoretical cross-sections.

Expected 95% CL upper limits on the production of a heavy Higgs boson as functions of fw and fww with mass equal to 300 GeV.

More…

Search for $t\bar tH/A \rightarrow t\bar tt\bar t$ production in the multilepton final state in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 203, 2023.
Inspire Record 2175533 DOI 10.17182/hepdata.135458

A search for a new heavy scalar or pseudo-scalar Higgs boson ($H/A$) produced in association with a pair of top quarks, with the Higgs boson decaying into a pair of top quarks ($H/A\rightarrow t\bar{t}$) is reported. The search targets a final state with exactly two leptons with same-sign electric charges or at least three leptons. The analysed dataset corresponds to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Two multivariate classifiers are used to separate the signal from the background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of a type-II two-Higgs-doublet model. The observed (expected) upper limits at 95% confidence level on the $t\bar{t}H/A$ production cross-section times the branching ratio of $H/A\rightarrow t\bar{t}$ range between 14 (10) fb and 6 (5) fb for a heavy Higgs boson with mass between 400 GeV and 1000 GeV, respectively. Assuming that only one particle, either the scalar $H$ or the pseudo-scalar $A$, contributes to the $t\bar{t}t\bar{t}$ final state, values of $\tan\beta$ below 1.2 or 0.5 are excluded for a mass of 400 GeV or 1000 GeV, respectively. These exclusion ranges increase to $\tan\beta$ below 1.6 or 0.6 when both particles are considered.

23 data tables

Pre-fit comparison between data and background in the baseline SR for two of the variables used as input for the SM BDT: the sum of the leading four jets b-tagging scores.

Pre-fit comparison between data and background in the baseline SR for two of the variables used as input for the SM BDT: the number of jets.

Pre-fit comparison between data and background in the baseline SR for two of the variables used as input for the BSM pBDT: SM BDT.

More…

Version 2
Search for Higgs boson pair production in association with a vector boson in $pp$ collisions at $\sqrt{s}=$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 83 (2023) 519, 2023.
Inspire Record 2164067 DOI 10.17182/hepdata.131626

This paper reports a search for Higgs boson pair ($hh$) production in association with a vector boson ($W$ or $Z$) using 139 $fb^{-1}$ of proton-proton collision data at $\sqrt{s}=$ 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The search is performed in final states in which the vector boson decays leptonically ($W\to\ell\nu, Z\to\ell\ell,\nu\nu$ with $\ell=e, \mu$) and the Higgs bosons each decay into a pair of $b$-quarks. It targets $Vhh$ signals from both non-resonant $hh$ production, present in the Standard Model (SM), and resonant $hh$ production, as predicted in some SM extensions. A 95% confidence-level upper limit of 183 (87) times the SM cross-section is observed (expected) for non-resonant $Vhh$ production when assuming the kinematics are as expected in the SM. Constraints are also placed on Higgs boson coupling modifiers. For the resonant search, upper limits on the production cross-sections are derived for two specific models: one is the production of a vector boson along with a neutral heavy scalar resonance $H$, in the mass range 260-1000 GeV, that decays into $hh$, and the other is the production of a heavier neutral pseudoscalar resonance $A$ that decays into a $Z$ boson and $H$ boson, where the $A$ boson mass is 360-800 GeV and the $H$ boson mass is 260-400 GeV. Constraints are also derived in the parameter space of two-Higgs-doublet models.

58 data tables

Acceptance times efficiency as a function of resonant mass for each event selection step in the search for a neutral heavy scalar resonance produced in association with a Z boson decaying to neutrinos.

Acceptance times efficiency as a function of resonant mass for each event selection step in the search for a neutral heavy scalar resonance produced in association with a Z boson decaying to neutrinos.

Acceptance times efficiency as a function of resonant mass for each event selection step in the search for a neutral heavy scalar resonance produced in association with a W boson decaying to a charged lepton and a neutrino.

More…

Search for pair-produced scalar and vector leptoquarks decaying into third-generation quarks and first- or second-generation leptons in pp collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 2306 (2023) 188, 2023.
Inspire Record 2163275 DOI 10.17182/hepdata.135703

A search for pair-produced scalar and vector leptoquarks decaying into quarks and leptons of different generations is presented. It uses the full LHC Run 2 (2015-2018) data set of 139 fb$^{-1}$ collected with the ATLAS detector in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. Scalar leptoquarks with charge -(1/3)e as well as scalar and vector leptoquarks with charge +(2/3)e are considered. All possible decays of the pair-produced leptoquarks into quarks of the third generation (t, b) and charged or neutral leptons of the first or second generation ($e, \mu, \nu$) with exactly one electron or muon in the final state are investigated. No significant deviations from the Standard Model expectation are observed. Upper limits on the production cross-section are provided for eight models as a function of the leptoquark mass and the branching ratio of the leptoquark into the charged or neutral lepton. In addition, lower limits on the leptoquark masses are derived for all models across a range of branching ratios. Two of these models have the goal of providing an explanation for the recent B-anomalies. In both models, a vector leptoquark decays into charged and neutral leptons of the second generation with a similar branching fraction. Lower limits of 1980 GeV and 1710 GeV are set on the leptoquark mass for these two models.

27 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>95% CL limits on the production cross-section for:</b> <ul> <li><a href="135703?version=1&table=%24LQ_u%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20observed%20limits">scalar up-type LQs decaying into a top quark and a neutrino or a bottom quark and a muon (observed)</a> <li><a href="135703?version=1&table=%24LQ_u%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20expected%20limits">scalar up-type LQs decaying into a top quark and a neutrino or a bottom quark and a muon (expected)</a> <li><a href="135703?version=1&table=%24LQ_u%20%5Crightarrow%20t%5Cnu%2Fbe%24%20observed%20limits">scalar up-type LQs decaying into a top quark and a neutrino or a bottom quark and an electron (observed)</a> <li><a href="135703?version=1&table=%24LQ_u%20%5Crightarrow%20t%5Cnu%2Fbe%24%20expected%20limits">scalar up-type LQs decaying into a top quark and a neutrino or a bottom quark and an electron (expected)</a> <li><a href="135703?version=1&table=%24LQ_d%20%5Crightarrow%20t%5Cmu%2Fb%5Cnu%24%20observed%20limits">scalar down-type LQs decaying into a bottom quark and a neutrino or a top quark and a muon (observed)</a> <li><a href="135703?version=1&table=%24LQ_d%20%5Crightarrow%20t%5Cmu%2Fb%5Cnu%24%20expected%20limits">scalar down-type LQs decaying into a bottom quark and a neutrino or a top quark and a muon (expected)</a> <li><a href="135703?version=1&table=%24LQ_d%20%5Crightarrow%20te%2Fb%5Cnu%24%20observed%20limits">scalar down-type LQs decaying into a bottom quark and a neutrino or a top quark and an electron (observed)</a> <li><a href="135703?version=1&table=%24LQ_d%20%5Crightarrow%20te%2Fb%5Cnu%24%20expected%20limits">scalar down-type LQs decaying into a bottom quark and a neutrino or a top quark and an electron (expected)</a> <li><a href="135703?version=1&table=%24vLQ_%7BYM%7D%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20observed%20limits">vector up-type LQs in the Yang-Mills coupling scenario decaying into a top quark and a neutrino or a bottom quark and a muon (observed)</a> <li><a href="135703?version=1&table=%24vLQ_%7BYM%7D%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20expected%20limits">vector up-type LQs in the Yang-Mills coupling scenario decaying into a top quark and a neutrino or a bottom quark and a muon (expected)</a> <li><a href="135703?version=1&table=%24vLQ_%7BYM%7D%20%5Crightarrow%20t%5Cnu%2Fbe%24%20observed%20limits">vector up-type LQs in the Yang-Mills coupling scenario decaying into a top quark and a neutrino or a bottom quark and an electron (observed)</a> <li><a href="135703?version=1&table=%24vLQ_%7BYM%7D%20%5Crightarrow%20t%5Cnu%2Fbe%24%20expected%20limits">vector up-type LQs in the Yang-Mills coupling scenario decaying into a top quark and a neutrino or a bottom quark and an electron (expected)</a> <li><a href="135703?version=1&table=%24vLQ_%7Bmin%7D%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20observed%20limits">vector up-type LQs in the minimal coupling scenario decaying into a top quark and a neutrino or a bottom quark and a muon (observed)</a> <li><a href="135703?version=1&table=%24vLQ_%7Bmin%7D%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20expected%20limits">vector up-type LQs in the minimal coupling scenario decaying into a top quark and a neutrino or a bottom quark and a muon (expected)</a> <li><a href="135703?version=1&table=%24vLQ_%7Bmin%7D%20%5Crightarrow%20t%5Cnu%2Fbe%24%20observed%20limits">vector up-type LQs in the minimal coupling scenario decaying into a top quark and a neutrino or a bottom quark and an electron (observed)</a> <li><a href="135703?version=1&table=%24vLQ_%7Bmin%7D%20%5Crightarrow%20t%5Cnu%2Fbe%24%20expected%20limits">vector up-type LQs in the minimal coupling scenario decaying into a top quark and a neutrino or a bottom quark and an electron (expected)</a> </ul> <b>Product of signal acceptance and efficiency in the training region for:</b> <ul> <li><a href="135703?version=1&table=%24LQ_u%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20Acceptance%20times%20Efficiency">scalar up-type LQs decaying into top quarks and neutrinos or bottom quarks and muons</a> <li><a href="135703?version=1&table=%24LQ_u%20%5Crightarrow%20t%5Cnu%2Fbe%24%20Acceptance%20times%20Efficiency">scalar up-type LQs decaying into top quarks and neutrinos or bottom quarks and electrons</a> <li><a href="135703?version=1&table=%24LQ_d%20%5Crightarrow%20t%5Cmu%2Fb%5Cnu%24%20Acceptance%20times%20Efficiency">scalar down-type LQs decaying into bottom quarks and neutrinos or top quarks and muons</a> <li><a href="135703?version=1&table=%24LQ_d%20%5Crightarrow%20te%2Fb%5Cnu%24%20Acceptance%20times%20Efficiency">scalar down-type LQs decaying into bottom quarks and neutrinos or top quarks and electrons</a> <li><a href="135703?version=1&table=%24vLQ_%7BYM%7D%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20Acceptance%20times%20Efficiency">vector up-type LQs in the Yang-Mills coupling scenario decaying into top quarks and neutrinos or bottom quarks and muons</a> <li><a href="135703?version=1&table=%24vLQ_%7BYM%7D%20%5Crightarrow%20t%5Cnu%2Fbe%24%20Acceptance%20times%20Efficiency">vector up-type LQs in the Yang-Mills coupling scenario decaying into top quarks and neutrinos or bottom quarks and electrons</a> <li><a href="135703?version=1&table=%24vLQ_%7Bmin%7D%20%5Crightarrow%20t%5Cnu%2Fb%5Cmu%24%20Acceptance%20times%20Efficiency">vector up-type LQs in the minimal coupling scenario decaying into top quarks and neutrinos or bottom quarks and muons</a> <li><a href="135703?version=1&table=%24vLQ_%7Bmin%7D%20%5Crightarrow%20t%5Cnu%2Fbe%24%20Acceptance%20times%20Efficiency">vector up-type LQs in the minimal coupling scenario decaying into top quarks and neutrinos or bottom quarks and electrons</a> </ul> <b>Cut-flow for:</b> <ul> <li><a href="135703?version=1&table=Scalar%20LQs%20cut-flow">scalar LQs</a> <li><a href="135703?version=1&table=Vector%20LQs%20cut-flow">vector LQs</a> </ul>

Observed 95% CL limits on the production cross-section for scalar up-type LQs decaying into a top quark and a neutrino or a bottom quark and a muon.

Expected 95% CL limits on the production cross-section for scalar up-type LQs decaying into a top quark and a neutrino or a bottom quark and a muon.

More…

$K^{*0}$ production in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7, 11.5, 14.5, 19.6, 27 and 39 GeV from RHIC beam energy scan

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 107 (2023) 034907, 2023.
Inspire Record 2642282 DOI 10.17182/hepdata.134956

We report the measurement of $K^{*0}$ meson at midrapidity ($|y|<$ 1.0) in Au+Au collisions at $\sqrt{s_{\rm NN}}$~=~7.7, 11.5, 14.5, 19.6, 27 and 39 GeV collected by the STAR experiment during the RHIC beam energy scan (BES) program. The transverse momentum spectra, yield, and average transverse momentum of $K^{*0}$ are presented as functions of collision centrality and beam energy. The $K^{*0}/K$ yield ratios are presented for different collision centrality intervals and beam energies. The $K^{*0}/K$ ratio in heavy-ion collisions are observed to be smaller than that in small system collisions (e+e and p+p). The $K^{*0}/K$ ratio follows a similar centrality dependence to that observed in previous RHIC and LHC measurements. The data favor the scenario of the dominance of hadronic re-scattering over regeneration for $K^{*0}$ production in the hadronic phase of the medium.

71 data tables

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 0-20%).

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 20-40%).

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 40-60%).

More…

A search for new resonances in multiple final states with a high transverse momentum $Z$ boson in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 036, 2023.
Inspire Record 2158974 DOI 10.17182/hepdata.132793

A generic search for resonances is performed with events containing a $Z$ boson with transverse momentum greater than 100 GeV, decaying into $e^+e^-$ or $\mu^+\mu^-$. The analysed data collected with the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider correspond to an integrated luminosity of 139 fb$^{-1}$. Two invariant mass distributions are examined for a localised excess relative to the expected Standard Model background in six independent event categories (and their inclusive sum) to increase the sensitivity. No significant excess is observed. Exclusion limits at 95% confidence level are derived for two cases: a model-independent interpretation of Gaussian-shaped resonances with the mass width between 3% and 10% of the resonance mass, and a specific heavy vector triplet model with the decay mode $W'\to ZW \to \ell\ell qq$.

62 data tables

Results of applying the BH algorithm to the mass spectra in the leading small-R jet category, using the fitted background estimations from the initial step

Results of applying the BH algorithm to the mass spectra in the leading bjet category, using the fitted background estimations from the initial step

Results of applying the BH algorithm to the mass spectra in the leading large-R jet category, using the fitted background estimations from the initial step

More…

Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the $W$-boson mass in ${\sqrt{s}=13\,}$TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 031, 2023.
Inspire Record 2157951 DOI 10.17182/hepdata.134068

A search for the electroweak production of pairs of charged sleptons or charginos decaying into two-lepton final states with missing transverse momentum is presented. Two simplified models of $R$-parity-conserving supersymmetry are considered: direct pair-production of sleptons ($\tilde{\ell}\tilde{\ell}$), with each decaying into a charged lepton and a $\tilde{\chi}_1^0$ neutralino, and direct pair-production of the lightest charginos $(\tilde{\chi}_1^\pm\tilde{\chi}_1^\mp)$, with each decaying into a $W$-boson and a $\tilde{\chi}_1^0$. The lightest neutralino ($\tilde{\chi}_1^0$) is assumed to be the lightest supersymmetric particle (LSP). The analyses target the experimentally challenging mass regions where $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and $m(\tilde{\chi}_1^\pm)-m(\tilde{\chi}_1^0)$ are close to the $W$-boson mass (`moderately compressed' regions). The search uses 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider. No significant excesses over the expected background are observed. Exclusion limits on the simplified models under study are reported in the ($\tilde{\ell},\tilde{\chi}_1^0$) and ($\tilde{\chi}_1^\pm,\tilde{\chi}_1^0$) mass planes at 95% confidence level (CL). Sleptons with masses up to 150 GeV are excluded at 95% CL for the case of a mass-splitting between sleptons and the LSP of 50 GeV. Chargino masses up to 140 GeV are excluded at 95% CL for the case of a mass-splitting between the chargino and the LSP down to about 100 GeV.

176 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <b>Title: </b><em>Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the $W$ boson mass in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector</em> <b>Paper website:</b> <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2019-02/">SUSY-2019-02</a> <b>Exclusion contours</b> <ul><li><b>Sleptons:</b> <a href=?table=excl_comb_obs_nominal>Combined Observed Nominal</a> <a href=?table=excl_comb_obs_up>Combined Observed Up</a> <a href=?table=excl_comb_obs_down>Combined Observed Down</a> <a href=?table=excl_comb_exp_nominal>Combined Expected Nominal</a> <a href=?table=excl_comb_exp_up>Combined Expected Up</a> <a href=?table=excl_comb_exp_down>Combined Expected Down</a> <a href=?table=excl_comb_obs_nominal_dM>Combined Observed Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_up_dM>Combined Observed Up $(\Delta m)$</a> <a href=?table=excl_comb_obs_down_dM>Combined Observed Down $(\Delta m)$</a> <a href=?table=excl_comb_exp_nominal_dM>Combined Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_exp_up_dM>Combined Expected Up $(\Delta m)$</a> <a href=?table=excl_comb_exp_down_dM>Combined Expected Down $(\Delta m)$</a> <a href=?table=excl_ee_obs_nominal>$\tilde{e}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_ee_exp_nominal>$\tilde{e}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_eLeL_obs_nominal>$\tilde{e}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_eLeL_exp_nominal>$\tilde{e}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_eReR_obs_nominal>$\tilde{e}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_eReR_exp_nominal>$\tilde{e}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_ee_obs_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_ee_exp_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_obs_nominal_dM>$\tilde{e}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_exp_nominal_dM>$\tilde{e}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_obs_nominal_dM>$\tilde{e}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_exp_nominal_dM>$\tilde{e}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mm_obs_nominal>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_mm_exp_nominal>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_mLmL_obs_nominal>$\tilde{\mu}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_mLmL_exp_nominal>$\tilde{\mu}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_mRmR_obs_nominal>$\tilde{\mu}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_mRmR_exp_nominal>$\tilde{\mu}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_mm_obs_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mm_exp_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_obs_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_exp_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_obs_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_exp_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_nominal_SR0j>Combined Observed Nominal SR-0j</a> <a href=?table=excl_comb_exp_nominal_SR0j>Combined Expected Nominal SR-0j</a> <a href=?table=excl_comb_obs_nominal_SR1j>Combined Observed Nominal SR-1j</a> <a href=?table=excl_comb_exp_nominal_SR1j>Combined Expected Nominal SR-1j</a> <li><b>Charginos:</b> <a href=?table=excl_c1c1_obs_nominal>Observed Nominal</a> <a href=?table=excl_c1c1_obs_up>Observed Up</a> <a href=?table=excl_c1c1_obs_down>Observed Down</a> <a href=?table=excl_c1c1_exp_nominal>Expected Nominal</a> <a href=?table=excl_c1c1_exp_nominal>Expected Up</a> <a href=?table=excl_c1c1_exp_nominal>Expected Down</a> <a href=?table=excl_c1c1_obs_nominal_dM>Observed Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_up_dM>Observed Up $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_down_dM>Observed Down $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Up $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Down $(\Delta m)$</a> </ul> <b>Upper Limits</b> <ul><li><b>Sleptons:</b> <a href=?table=UL_slep>ULs</a> <li><b>Charginos:</b> <a href=?table=UL_c1c1>ULs</a> </ul> <b>Pull Plots</b> <ul><li><b>Sleptons:</b> <a href=?table=pullplot_slep>SRs summary plot</a> <li><b>Charginos:</b> <a href=?table=pullplot_c1c1>SRs summary plot</a> </ul> <b>Cutflows</b> <ul><li><b>Sleptons:</b> <a href=?table=Cutflow_slep_SR0j>Towards SR-0J</a> <a href=?table=Cutflow_slep_SR1j>Towards SR-1J</a> <li><b>Charginos:</b> <a href=?table=Cutflow_SRs>Towards SRs</a> </ul> <b>Acceptance and Efficiencies</b> <ul><li><b>Sleptons:</b> <a href=?table=Acceptance_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_125>SR-0J $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_125_130>SR-0J $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_125>SR-1j $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_125_130>SR-1j $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <li><b>Charginos:</b> <a href=?table=Acceptance_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Efficiency</a></ul> <b>Truth Code snippets</b>, <b>SLHA</b> and <b>machine learning</b> files are available under "Resources" (purple button on the left)

The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.

The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.

More…

Higher-Order Cumulants and Correlation Functions of Proton Multiplicity Distributions in $\sqrt{s_{\mathrm{NN}}}$ = 3 GeV Au+Au Collisions at the STAR Experiment

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 107 (2023) 024908, 2023.
Inspire Record 2631860 DOI 10.17182/hepdata.134023

We report a measurement of cumulants and correlation functions of event-by-event proton multiplicity distributions from fixed-target Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV measured by the STAR experiment. Protons are identified within the rapidity ($y$) and transverse momentum ($p_{\rm T}$) region $-0.9 < y<0$ and $0.4 < p_{\rm T} <2.0 $ GeV/$c$ in the center-of-mass frame. A systematic analysis of the proton cumulants and correlation functions up to sixth-order as well as the corresponding ratios as a function of the collision centrality, $p_{\rm T}$, and $y$ are presented. The effect of pileup and initial volume fluctuations on these observables and the respective corrections are discussed in detail. The results are compared to calculations from the hadronic transport UrQMD model as well as a hydrodynamic model. In the most central 5% collisions, the value of proton cumulant ratio $C_4/C_2$ is negative, drastically different from the values observed in Au+Au collisions at higher energies. Compared to model calculations including Lattice QCD, a hadronic transport model, and a hydrodynamic model, the strong suppression in the ratio of $C_4/C_2$ at 3 GeV Au+Au collisions indicates an energy regime dominated by hadronic interactions.

41 data tables

The uncorrected number of charged particles except protons ($N_{\rm ch}$) within the pseudorapidity $−2<\eta<0$ used for the centrality selection for Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV. The centrality classes are expressed in % of the total cross section. The lower boundary of the particle multiplicity ($N_{\rm ch}$) is included for each centrality class. Values are provided for the average number of participants ($\langle N_{\rm part}\rangle$) and pileup fraction. The fraction of pileup for each centrality bin is also shown in the last column. The averaged pileup fraction from the minimum biased collisions is determined to be 0.46%. Values in the parentheses are systematic uncertainty.

The centrality definition determined by $N_{\rm part}$ in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV from the UrQMD model. The centrality definition is only used in the UrQMD calculation.

Main contributors to systematic uncertainty to the proton cumulant ratios: $C_2/C_1$, $C_3/C_2$,and $C_4/C_2$ from 0–5% central 3 GeV Au+Au collisions. The first row shows the values and statistical uncertainties of those ratios. The corresponding values of these ratios along with the statistical uncertainties are listed in the table. The final total value is the quadratic sum of uncertainties from centrality, pileup, and the dominant contribution from TPC hits, DCA, TOF $m^2$, and detector efficiency. Clearly, this analysis is systematically dominant.

More…

Search for resonant and non-resonant Higgs boson pair production in the $b\bar b\tau^+\tau^-$ decay channel using 13 TeV $pp$ collision data from the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 040, 2023.
Inspire Record 2155171 DOI 10.17182/hepdata.130794

A search for Higgs boson pair production in events with two $b$-jets and two $\tau$-leptons is presented, using a proton-proton collision dataset with an integrated luminosity of 139 fb$^{-1}$ collected at $\sqrt{s}=13$ TeV by the ATLAS experiment at the LHC. Higgs boson pairs produced non-resonantly or in the decay of a narrow scalar resonance in the mass range from 251 to 1600 GeV are targeted. Events in which at least one $\tau$-lepton decays hadronically are considered, and multivariate discriminants are used to reject the backgrounds. No significant excess of events above the expected background is observed in the non-resonant search. The largest excess in the resonant search is observed at a resonance mass of 1 TeV, with a local (global) significance of $3.1\sigma$ ($2.0\sigma$). Observed (expected) 95% confidence-level upper limits are set on the non-resonant Higgs boson pair-production cross-section at 4.7 (3.9) times the Standard Model prediction, assuming Standard Model kinematics, and on the resonant Higgs boson pair-production cross-section at between 21 and 900 fb (12 and 840 fb), depending on the mass of the narrow scalar resonance.

51 data tables

Breakdown of the relative contributions to the uncertainty in the extracted signal cross-sections, as determined in the likelihood fit (described in Section 8) to data. These are obtained by fixing the relevant nuisance parameters in the likelihood fit, and subtracting the obtained uncertainty on the fitted signal cross-sections in quadrature from the total uncertainty, and then dividing the result by the total uncertainty. The sum in quadrature of the individual components differs from the total uncertainty due to correlations between uncertainties in the different groups.

Post-fit expected number of signal and background events and observed number of data events in the last two bins of the non-resonant BDT score distribution of the SM signal after applying the selection criteria and requiring exactly 2 b-tagged jets and assuming a background-only hypothesis

Observed and expected upper limits at 95% CL on the cross-section of non-resonant HH production according to SM-like kinematics, and on the cross-section of non-resonant HH production divided by the SM prediction. The 1 sigma and 2 sigma variations around the expected limit are also shown.

More…

Measurement of single top-quark production in the s-channel in proton$-$proton collisions at $\mathrm{\sqrt{s}=13}$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 191, 2023.
Inspire Record 2153660 DOI 10.17182/hepdata.133620

A measurement of single top-quark production in the s-channel is performed in proton$-$proton collisions at a centre-of-mass energy of 13 TeV with the ATLAS detector at the CERN Large Hadron Collider. The dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The analysis is performed on events with an electron or muon, missing transverse momentum and exactly two $b$-tagged jets in the final state. A discriminant based on matrix element calculations is used to separate single-top-quark s-channel events from the main background contributions, which are top-quark pair production and $W$-boson production in association with jets. The observed (expected) signal significance over the background-only hypothesis is 3.3 (3.9) standard deviations, and the measured cross-section is $\sigma=8.2^{+3.5}_{-2.9}$ pb, consistent with the Standard Model prediction of $\sigma^{\mathrm{SM}}=10.32^{+0.40}_{-0.36}$ pb.

35 data tables

Result of the s-channel single-top cross-section measurement, in pb. The statistical and systematic uncertainties are given, as well as the total uncertainty. The normalisation factors for the $t\bar{t}$ and $W$+jets backgrounds are also shown, with their total uncertainties.

Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the signal region, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.

Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the $W$+jets VR, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.

More…

Measurements of observables sensitive to colour reconnection in $t\bar{t}$ events with the ATLAS detector at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 518, 2023.
Inspire Record 2152933 DOI 10.17182/hepdata.135459

A measurement of observables sensitive to effects of colour reconnection in top-quark pair-production events is presented using 139 fb$^{-1}$ of 13$\,$TeV proton-proton collision data collected by the ATLAS detector at the LHC. Events are selected by requiring exactly one isolated electron and one isolated muon with opposite charge and two or three jets, where exactly two jets are required to be $b$-tagged. For the selected events, measurements are presented for the charged-particle multiplicity, the scalar sum of the transverse momenta of the charged particles, and the same scalar sum in bins of charged-particle multiplicity. These observables are unfolded to the stable-particle level, thereby correcting for migration effects due to finite detector resolution, acceptance and efficiency effects. The particle-level measurements are compared with different colour reconnection models in Monte Carlo generators. These measurements disfavour some of the colour reconnection models and provide inputs to future optimisation of the parameters in Monte Carlo generators.

149 data tables

Binning used for the measured $\sum_{n_{\text{ch}}} p_{\text{T}}$ in bins of $n_\text{ch}$ observable.

Event yields obtained after the event selection. The expected event yields from $t\bar{t}$ production and the various background processes are compared with the observed event yield. The fractional contributions from $t\bar{t}$ production and the background processes to the expected event yield is given in %. The processes labelled by `Others' include production of $Z$+jets and diboson background events. The uncertainties include the MC statistical uncertainty and the normalisation uncertainty.

Summary of the estimated pile-up scale factors $c_{\text{PU}}$, parameterisd in $\mu$ and $n_{\text{trk,out}}$. All values have a statistical precision of 0.01.

More…

Measurement of the top-quark mass using a leptonic invariant mass in $pp$ collisions at $\sqrt{s}=13~\textrm{TeV}$ with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 019, 2023.
Inspire Record 2145514 DOI 10.17182/hepdata.91999

A measurement of the top-quark mass ($m_t$) in the $t\bar{t}\rightarrow~\textrm{lepton}+\textrm{jets}$ channel is presented, with an experimental technique which exploits semileptonic decays of $b$-hadrons produced in the top-quark decay chain. The distribution of the invariant mass $m_{\ell\mu}$ of the lepton, $\ell$ (with $\ell=e,\mu$), from the $W$-boson decay and the muon, $\mu$, originating from the $b$-hadron decay is reconstructed, and a binned-template profile likelihood fit is performed to extract $m_t$. The measurement is based on data corresponding to an integrated luminosity of 36.1 fb$^{-1}$ of $\sqrt{s} = 13~\textrm{TeV}$$pp$ collisions provided by the Large Hadron Collider and recorded by the ATLAS detector. The measured value of the top-quark mass is $m_{t} = 174.41\pm0.39~(\textrm{stat.})\pm0.66~(\textrm{syst.})\pm0.25~(\textrm{recoil})~\textrm{GeV}$, where the third uncertainty arises from changing the PYTHIA8 parton shower gluon-recoil scheme, used in top-quark decays, to a recently developed setup.

4 data tables

Top mass measurement result.

List of all the individual sources of systematic uncertainty considered in the analysis. The individual sources, each corresponding to an independent nuisance parameter in the fit, are grouped into categories, as indicated in the first column. The second column shows the impact of each of the individual sources on the measurement, obtained as the shift on the top mass induced by a positive shift of the each of the nuisance parameters by its post-fit uncertainty. Sources for which no impact is indicated are neglected in the fit procedure as their impact on the total prediction is negligible in any of the bins. The last column shows the statistical uncertainty in each of the reported numbers as estimated with the bootstrap method.

Ranking, from top to bottom, of the main systematic uncertainties (excluding recoil) showing the pulls and the impact of the systematic uncertainties on the top mass, from the combined opposite sign (OS) and same sign (SS) binned-template profile likelihood fit to data. The OS or SS refers to the charge signs of the primary lepton and the soft muon. The gamma parameters are NPs used to describe the effect of the limited statistics of the sample.

More…

Measurement of electroweak $Z(\nu\bar{\nu})\gamma jj$ production and limits on anomalous quartic gauge couplings in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 082, 2023.
Inspire Record 2142343 DOI 10.17182/hepdata.127924

The electroweak production of $Z(\nu\bar{\nu})\gamma$ in association with two jets is studied in a regime with a photon of high transverse momentum above 150 GeV using proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider. The analysis uses a data sample with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector during the 2015-2018 LHC data-taking period. This process is an important probe of the electroweak symmetry breaking mechanism in the Standard Model and is sensitive to quartic gauge boson couplings via vector-boson scattering. The fiducial $Z(\nu\bar{\nu})\gamma jj$ cross section for electroweak production is measured to be 0.77$^{+0.34}_{-0.30}$ fb and is consistent with the Standard Model prediction. Evidence of electroweak $Z(\nu\bar{\nu})\gamma jj$ production is found with an observed significance of 3.2$\sigma$ for the background-only hypothesis, compared with an expected significance of 3.7$\sigma$. The combination of this result with the previously published ATLAS observation of electroweak $Z(\nu\bar{\nu})\gamma jj$ production yields an observed (expected) signal significance of 6.3$\sigma$ (6.6$\sigma$). Limits on anomalous quartic gauge boson couplings are obtained in the framework of effective field theory with dimension-8 operators.

21 data tables

These graphs indicate the effect of the main theory uncertainties, which are associated with the renormalisation and factorisation scales (dashed cyan), underlying event and parton showering (UE+PS) or generator choice (dash-dotted red), alternative PDF sets (dotted orange), combined NNPDF set variation and $\alpha_s$ uncertainty (loosely dash-dotted green). These are shown in the signal region for the $Z(\nu\bar{\nu})\gamma jj$ EWK process. The BDT classifier response was remapped into equal width bins for better representation. The uncertainty band corresponds to the uncertainty due to the limited number of MC events.

These graphs indicate the effect of the main theory uncertainties, which are associated with the renormalisation and factorisation scales (dashed cyan), underlying event and parton showering (UE+PS) or generator choice (dash-dotted red), alternative PDF sets (dotted orange), combined NNPDF set variation and $\alpha_{s}$ uncertainty (loosely dash-dotted green). These are shown in the signal region for the $Z(\nu\bar{\nu})\gamma jj$ QCD process. The BDT classifier response was remapped into equal width bins for better representation. The uncertainty band corresponds to the uncertainty due to the limited number of MC events.

The $m_{jj}$ distributions for the CRs and the BDT classifier response distribution for the SR after the fit in all regions. The dashed line shows the total background distribution before the fit. The vertical error bars on the data points correspond to the data's statistical uncertainty. Overflows are included in the last bin. The uncertainty band corresponds to the combination of the MC statistical uncertainty and systematic uncertainties obtained in the fit.

More…

Evidence for the charge asymmetry in $pp \rightarrow t\bar{t}$ production at $\sqrt{s}= 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 08 (2023) 077, 2023.
Inspire Record 2141752 DOI 10.17182/hepdata.132116

Inclusive and differential measurements of the top-antitop ($t\bar{t}$) charge asymmetry $A_\text{C}^{t\bar{t}}$ and the leptonic asymmetry $A_\text{C}^{\ell\bar{\ell}}$ are presented in proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb$^{-1}$, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive $t\bar{t}$ charge asymmetry is measured to be $A_\text{C}^{t\bar{t}} = 0.0068 \pm 0.0015$, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.

50 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Results:</b> <ul> <li><a href="132116?version=1&table=Resultsforchargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=1&table=Resultsforleptonicchargeasymmetryinclusive">$A_C^{\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvsllmll">$A_C^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=Resultsforchargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul> <b>Bounds on the Wilson coefficients:</b> <ul> <li><a href="132116?version=1&table=BoundsonWilsoncoefficientschargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=1&table=BoundsonWilsoncoefficientschargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> </ul> <b>Ranking of systematic uncertainties:</b></br> Inclusive:<a href="132116?version=1&table=NPrankingchargeasymmetryinclusive">$A_C^{t\bar{t}}$</a></br> <b>$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$:</b> <ul> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsbetattbin0">$\beta_{z,t\bar{t}} \in[0,0.3]$</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsbetattbin1">$\beta_{z,t\bar{t}} \in[0.3,0.6]$</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsbetattbin2">$\beta_{z,t\bar{t}} \in[0.6,0.8]$</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsbetattbin3">$\beta_{z,t\bar{t}} \in[0.8,1]$</a> </ul> <b>$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$:</b> <ul> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsmttbin0">$m_{t\bar{t}}$ &lt; $500$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsmttbin1">$m_{t\bar{t}} \in [500,750]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsmttbin2">$m_{t\bar{t}} \in [750,1000]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsmttbin3">$m_{t\bar{t}} \in [1000,1500]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsmttbin4">$m_{t\bar{t}}$ &gt; $1500$GeV</a> </ul> <b>$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$:</b> <ul> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsptttbin0">$p_{T,t\bar{t}} \in [0,30]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsptttbin1">$p_{T,t\bar{t}} \in[30,120]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsptttbin2">$p_{T,t\bar{t}}$ &gt; $120$GeV</a> </ul> Inclusive leptonic:<a href="132116?version=1&table=NPrankingleptonicchargeasymmetryinclusive">$A_C^{\ell\bar{\ell}}$</a></br> <b>$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=1&tableNPrankingchargeasymmetry=vsllbetallbin0">$\beta_{z,\ell\bar{\ell}} \in [0,0.3]$</a> <li><a href="132116?version=1&tableNPrankingchargeasymmetry=vsllbetallbin1">$\beta_{z,\ell\bar{\ell}} \in [0.3,0.6]$</a> <li><a href="132116?version=1&tableNPrankingchargeasymmetry=vsllbetallbin2">$\beta_{z,\ell\bar{\ell}} \in [0.6,0.8]$</a> <li><a href="132116?version=1&tableNPrankingchargeasymmetry=vsllbetallbin3">$\beta_{z,\ell\bar{\ell}} \in [0.8,1]$</a> </ul> <b>$A_C^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllmllbin0">$m_{\ell\bar{\ell}}$ &lt; $200$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllmllbin1">$m_{\ell\bar{\ell}} \in [200,300]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllmllbin2">$m_{\ell\bar{\ell}} \in [300,400]$Ge$</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllmllbin3">$m_{\ell\bar{\ell}}$ &gt; $400$GeV</a> </ul> <b>$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllptllbin0">$p_{T,\ell\bar{\ell}}\in [0,20]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllptllbin1">$p_{T,\ell\bar{\ell}}\in[20,70]$GeV</a> <li><a href="132116?version=1&table=NPrankingchargeasymmetryvsllptllbin2">$p_{T,\ell\bar{\ell}}$ &gt; $70$GeV</a> </ul> <b>NP correlations:</b> <ul> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=1&table=NPcorrelationsleptonicchargeasymmetryinclusive">$A_c^{\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvsllmll">$A_c^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=NPcorrelationschargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul> <b>Covariance matrices:</b> <ul> <li><a href="132116?version=1&table=Covariancematrixchargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=1&table=Covariancematrixchargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=1&table=Covariancematrixchargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=1&table=Covariancematrixleptonicchargeasymmetryvsllmll">$A_c^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=Covariancematrixleptonicchargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=1&table=Covariancematrixleptonicchargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul>

The unfolded inclusive charge asymmetry. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

The unfolded differential charge asymmetry as a function of the invariant mass of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.

More…

Search for flavour-changing neutral current interactions of the top quark and the Higgs boson in events with a pair of $\tau$-leptons in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 2306 (2023) 155, 2023.
Inspire Record 2141572 DOI 10.17182/hepdata.130958

A search for flavour-changing neutral current (FCNC) $tqH$ interactions involving a top quark, another up-type quark ($q=u$, $c$), and a Standard Model (SM) Higgs boson decaying into a $\tau$-lepton pair ($H\rightarrow \tau^+\tau^-$) is presented. The search is based on a dataset of $pp$ collisions at $\sqrt{s}=13$ TeV that corresponds to an integrated luminosity of 139 fb$^{-1}$ recorded with the ATLAS detector at the Large Hadron Collider. Two processes are considered: single top quark FCNC production in association with a Higgs boson ($pp\rightarrow tH$), and top quark pair production in which one of the top quarks decays into $Wb$ and the other decays into $qH$ through the FCNC interactions. The search selects events with two hadronically decaying $\tau$-lepton candidates ($\tau_{\text{had}}$) or at least one $\tau_{\text{had}}$ with an additional lepton ($e$, $\mu$), as well as multiple jets. Event kinematics is used to separate signal from the background through a multivariate discriminant. A slight excess of data is observed with a significance of 2.3$\sigma$ above the expected SM background, and 95% CL upper limits on the $t\to qH$ branching ratios are derived. The observed (expected) 95% CL upper limits set on the $t\to cH$ and $t\to uH$ branching ratios are $9.4 \times 10^{-4}$ $(4.8^{+2.2}_{-1.4}\times 10^{-4})$ and $6.9\times 10^{-4}$ $(3.5^{+1.5}_{-1.0}\times 10^{-4})$, respectively. The corresponding combined observed (expected) upper limits on the dimension-6 operator Wilson coefficients in the effective $tqH$ couplings are $C_{c\phi} <1.35$ $(0.97)$ and $C_{u\phi} <1.16$ $(0.82)$.

54 data tables

Leading tau Pt distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{\ell}\tau_{had}\tau_{had}$ region. Other MC includes single top, V+jets, and other small backgrounds. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".

Leading tau Pt distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{\ell}\tau_{had}$-1j region. Other MC includes single top, V+jets, and other small backgrounds. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".

Leading tau Pt distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{\ell}\tau_{had}$-2j region. Other MC includes single top, V+jets, and other small backgrounds. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".

More…

Version 2
Searches for exclusive Higgs and $Z$ boson decays into a vector quarkonium state and a photon using $139$ fb$^{-1}$ of ATLAS $\sqrt{s}=13$ TeV proton$-$proton collision data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 781, 2023.
Inspire Record 2132750 DOI 10.17182/hepdata.132657

Searches for the exclusive decays of Higgs and $Z$ bosons into a vector quarkonium state and a photon are performed in the $\mu^+\mu^- \gamma$ final state with a proton$-$proton collision data sample corresponding to an integrated luminosity of $139$ fb$^{-1}$ collected at $\sqrt{s}=13$ TeV with the ATLAS detector at the CERN Large Hadron Collider. The observed data are compatible with the expected backgrounds. The 95% CL$_\mathrm{s}$ upper limits on the branching fractions of the Higgs boson decays into $J/\psi \gamma$, $\psi(2S) \gamma$, and $\Upsilon(1S,2S,3S) \gamma$ are found to be $2.1\times10^{-4}$, $10.9\times10^{-4}$, and $(2.6,4.4,3.5)\times10^{-4}$, respectively, assuming Standard Model production of the Higgs boson. The corresponding 95% CL$_\mathrm{s}$ upper limits on the branching fractions of the $Z$ boson decays are $1.2\times10^{-6}$, $2.3\times10^{-6}$, and $(1.0,1.2,2.3)\times10^{-6}$.

4 data tables

Numbers of observed and expected background events for the $m_{\mu^+\mu^-\gamma}$ ranges of interest. Each expected background and the corresponding uncertainty of its mean is obtained from a background-only fit to the data; the uncertainty does not take into account statistical fluctuations in each mass range. Expected $Z$ and Higgs boson signal contributions, with their corresponding total systematic uncertainty, are shown for reference branching fractions of $10^{-6}$ and $10^{-3}$, respectively. The ranges in $m_{\mu^+\mu^-}$ are centred around each quarkonium resonance, with a width driven by the resolution of the detector; in particular, the ranges for the $\Upsilon(nS)$ resonances are based on the resolution in the endcaps. It is noted that the discrepancy between the observed and expected backgrounds for $m_{\mu^+\mu^-} = 9.0$-$9.8$ GeV in the endcaps was found to have a small impact on the observed limit for $Z\rightarrow\Upsilon(1S)\,\gamma$.

Numbers of observed and expected background events for the $m_{\mu^+\mu^-\gamma}$ ranges of interest. Each expected background and the corresponding uncertainty of its mean is obtained from a background-only fit to the data; the uncertainty does not take into account statistical fluctuations in each mass range. Expected $Z$ and Higgs boson signal contributions, with their corresponding total systematic uncertainty, are shown for reference branching fractions of $10^{-6}$ and $10^{-3}$, respectively. The ranges in $m_{\mu^+\mu^-}$ are centred around each quarkonium resonance, with a width driven by the resolution of the detector; in particular, the ranges for the $\Upsilon(nS)$ resonances are based on the resolution in the endcaps. It is noted that the discrepancy between the observed and expected backgrounds for $m_{\mu^+\mu^-} = 9.0$-$9.8$ GeV in the endcaps was found to have a small impact on the observed limit for $Z\rightarrow\Upsilon(1S)\,\gamma$.

Expected, with the corresponding $\pm 1\sigma$ intervals, and observed 95% CL branching fraction upper limits for the Higgs and $Z$ boson decays into a quarkonium state and a photon. Standard Model production of the Higgs boson is assumed. The corresponding upper limits on the production cross section times branching fraction $\sigma\times\mathcal{B}$ are also shown.

More…

Pion, Kaon, and (Anti-)Proton Production in U+U Collisions at $\sqrt{s_{NN}}$ = 193 GeV in STAR

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 107 (2023) 024901, 2023.
Inspire Record 2629622 DOI 10.17182/hepdata.132660

We present the first measurements of transverse momentum spectra of $\pi^{\pm}$, $K^{\pm}$, $p(\bar{p})$ at midrapidity ($|y| < 0.1$) in U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV with the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The centrality dependence of particle yields, average transverse momenta, particle ratios and kinetic freeze-out parameters are discussed. The results are compared with the published results from Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV in STAR. The results are also compared to those from A Multi Phase Transport (AMPT) model.

20 data tables

'Identified transverse momentum spectra of $\pi^{+}$ at midrapidity (|y| < 0.1) in U+U collisions at $\sqrt{s_{\rm NN}}$ = 193 GeV'

'Identified transverse momentum spectra of $K^{+}$ at midrapidity (|y| < 0.1) in U+U collisions at $\sqrt{s_{\rm NN}}$ = 193 GeV'

'Identified transverse momentum spectra of p at midrapidity (|y| < 0.1) in U+U collisions at $\sqrt{s_{\rm NN}}$ = 193 GeV'

More…

Version 2
Measurement of the total cross section and $\rho$-parameter from elastic scattering in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 441, 2023.
Inspire Record 2122408 DOI 10.17182/hepdata.128017

In a special run of the LHC with $\beta^\star = 2.5~$km, proton-proton elastic-scattering events were recorded at $\sqrt{s} = 13~$TeV with an integrated luminosity of $340~\mu \textrm{b}^{-1}$ using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam $t$ variable in the range from $-t = 2.5 \cdot 10^{-4}~$GeV$^{2}$ to $-t = 0.46~$GeV$^{2}$ using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section $\sigma_{\textrm{tot}}$, parameters of the nuclear slope, and the $\rho$-parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit $t \rightarrow 0$. These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the $t$-dependence. The results for $\sigma_{\textrm{tot}}$ and $\rho$ are \begin{equation*} \sigma_{\textrm{tot}}(pp\rightarrow X) = \mbox{104.7} \pm 1.1 \; \mbox{mb} , \; \; \; \rho = \mbox{0.098} \pm 0.011 . \end{equation*} The uncertainty in $\sigma_{\textrm{tot}}$ is dominated by the luminosity measurement, and in $\rho$ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude.

22 data tables

The measured total cross section. The systematic uncertainty includes experimental and theoretical uncerainties.

The measured total cross section. The systematic uncertainty includes experimental and theoretical uncerainties.

The rho-parameter, i.e. the ratio of the real to imaginary part of the elastic scattering amplitude extrapolated to t=0. The systematic uncertainty includes experimental and theoretical uncerainties.

More…

Version 2
Search for resonant $WZ \rightarrow \ell\nu \ell^{\prime}\ell^{\prime}$ production in proton$-$proton collisions at $\mathbf{\sqrt{s} = 13}$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 633, 2023.
Inspire Record 2107940 DOI 10.17182/hepdata.129151

A search for a $WZ$ resonance, in the fully leptonic final state (electrons and muons), is performed using 139 fb$^{-1}$ of data collected at a centre-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. The results are interpreted in terms of a singly charged Higgs boson of the Georgi$-$Machacek model, produced by $WZ$ fusion, and of a Heavy Vector Triplet, with the resonance produced by $WZ$ fusion or the Drell$-$Yan process. No significant excess over the Standard Model predictions is observed and limits are set on the production cross-section times branching ratio as a function of the resonance mass for these processes.

36 data tables

Comparisons of the data and the expected background distributions of the WZ invariant mass in the Drell-Yan signal region. The background predictions are obtained through a background-only simultaneous fit to the Drell-Yan signal region and the WZ-QCD Drell-Yan and ZZ Drell-Yan control regions. The yields are normalized to the bin width.

Comparisons of the data and the expected background distributions of the WZ invariant mass in the Drell-Yan signal region. The background predictions are obtained through a background-only simultaneous fit to the Drell-Yan signal region and the WZ-QCD Drell-Yan and ZZ Drell-Yan control regions. The yields are normalized to the bin width.

Comparisons of the data and the expected background distributions of the WZ invariant mass in the ANN-based VBF signal region. The background predictions are obtained through a background-only simultaneous fit to the VBF signal region and the WZ-QCD and ZZ VBF control regions. The yields are normalized to the bin width

More…