This Letter reports a measurement of the exclusive $\gamma\gamma\rightarrow \ell^+\ell^- (\ell=e, \mu)$ cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV by the ATLAS experiment at the LHC, based on an integrated luminosity of $4.6$ fb$^{-1}$. For the electron or muon pairs satisfying exclusive selection criteria, a fit to the dilepton acoplanarity distribution is used to extract the fiducial cross-sections. The cross-section in the electron channel is determined to be $\sigma_{\gamma\gamma\rightarrow e^+e^-}^{\mathrm{excl.}} = 0.428 \pm 0.035 (\mathrm{stat.}) \pm 0.018 (\mathrm{syst.})$ pb for a phase-space region with invariant mass of the electron pairs greater than 24 GeV, in which both electrons have transverse momentum $p_\mathrm{T}>12$ GeV and pseudorapidity $|\eta|<2.4$. For muon pairs with invariant mass greater than 20 GeV, muon transverse momentum $p_\mathrm{T}>10$ GeV and pseudorapidity $|\eta|<2.4$, the cross-section is determined to be $\sigma_{\gamma\gamma\rightarrow \mu^+\mu^- }^{\mathrm{excl.}} = 0.628 \pm 0.032 (\mathrm{stat.}) \pm 0.021 (\mathrm{syst.})$ pb. When proton absorptive effects due to the finite size of the proton are taken into account in the theory calculation, the measured cross-sections are found to be consistent with the theory prediction.
The production rates of prompt and non-prompt $J/\psi$ and $\psi(2\mathrm{S})$ mesons are measured using 2.1 $fb^{-1}$ and 11.4 $fb^{-1}$ of data collected with the ATLAS experiment at the LHC, in proton-proton collisions at $\sqrt{s}=7$ and 8 TeV respectively. Production cross-sections for both prompt and non-prompt production sources, ratios of $\psi(2\mathrm{S})$ to $J/\psi$ production, and fractions of non-prompt to inclusive production for $J/\psi$ and $\psi(2\mathrm{S})$ are measured double-differentially as a function of meson $p_{T}$ and rapidity. These measurements are made in a restricted fiducial volume and also corrected for geometrical acceptance after which they are compared to a variety of theoretical predictions.
Fiducial cross-sections for $t\bar{t}$ production with one or two additional $b$-jets are reported, using an integrated luminosity of 20.3 fb$^{-1}$ of proton--proton collisions at a centre-of-mass energy of 8 TeV at the Large Hadron Collider, collected with the ATLAS detector. The cross-section times branching ratio for $t\bar{t}$ events with at least one additional $b$-jet is measured to be 950 $\pm$ 70 (stat.) $^{+240}_{-190}$ (syst.) fb in the lepton-plus-jets channel and 50 $\pm$ 10 (stat.) $^{+15}_{-10}$ (syst.) fb in the $e \mu$ channel. The cross-section times branching ratio for events with at least two additional $b$-jets is measured to be 19.3 $\pm$ 3.5 (stat.) $\pm$ 5.7 (syst.) fb in the dilepton channel ($e \mu$,\,$\mu\mu$, and \,$ee$) using a method based on tight selection criteria, and 13.5 $\pm$ 3.3 (stat.) $\pm$ 3.6 (syst.) fb using a looser selection that allows the background normalisation to be extracted from data. The latter method also measures a value of 1.30 $\pm$ 0.33 (stat.) $\pm$ 0.28 (syst.)\% for the ratio of $t\bar{t}$ production with two additional $b$-jets to $t\bar{t}$ production with any two additional jets. All measurements are in good agreement with recent theory predictions.
The production of $W$ boson pairs in proton-proton collisions at $\sqrt{s}=$ 8 TeV is studied using data corresponding to 20.3 fb$^{-1}$ of integrated luminosity collected by the ATLAS detector during 2012 at the CERN Large Hadron Collider. The $W$ bosons are reconstructed using their leptonic decays into electrons or muons and neutrinos. Events with reconstructed jets are not included in the candidate event sample. A total of 6636 $WW$ candidate events are observed. Measurements are performed in fiducial regions closely approximating the detector acceptance. The integrated measurement is corrected for all acceptance effects and for the $W$ branching fractions to leptons in order to obtain the total $WW$ production cross section, which is found to be 71.1$\pm1.1$(stat)$^{+5.7}_{-5.0}$(syst)$\pm1.4$ pb. This agrees with the next-to-next-to-leading-order Standard Model prediction of 63.2$^{+1.6}_{-1.4}$(scale)$\pm1.2$(PDF) pb. Fiducial differential cross sections are measured as a function of each of six kinematic variables. The distribution of the transverse momentum of the leading lepton is used to set limits on anomalous triple-gauge-boson couplings.
Distributions of transverse momentum $p_T^{ll}$ and the angular variable $\phi^*_\eta$ of Drell--Yan lepton pairs are measured in 20.3 fb$^{-1}$ of proton--proton collisions at $\sqrt{s}=8$ TeV with the ATLAS detector at the LHC. Measurements in electron-pair and muon-pair final states are corrected for detector effects and combined. Compared to previous measurements in proton--proton collisions at $\sqrt{s}=7$ TeV, these new measurements benefit from a larger data sample and improved control of systematic uncertainties. Measurements are performed in bins of lepton-pair mass above, around and below the Z-boson mass peak. The data are compared to predictions from perturbative and resummed QCD calculations. For values of $\phi^*_\eta < 1$ the predictions from the Monte Carlo generator ResBos are generally consistent with the data within the theoretical uncertainties. However, at larger values of $\phi^*_\eta$ this is not generally the case. Monte Carlo generators based on the parton-shower approach are unable to describe the data over the full range of $p_T^{ll}$ and the fixed-order prediction of DYNNLO falls below the data at high values of $p_T^{ll}$. ResBos and the parton-shower Monte Carlo generators provide a much better description of the evolution of the $\phi^*_\eta$ and $p_T^{ll}$ distributions as a function of lepton-pair mass and rapidity.
The distribution and orientation of energy inside jets is predicted to be an experimental handle on colour connections between the hard--scatter quarks and gluons initiating the jets. This Letter presents a measurement of the distribution of one such variable, the jet pull angle. The pull angle is measured for jets produced in $t\bar{t}$ events with one $W$ boson decaying leptonically and the other decaying to jets using 20.3 fb$^{-1}$ of data recorded with the ATLAS detector at a centre-of-mass energy of $\sqrt{s}=8$ TeV at the LHC. The jet pull angle distribution is corrected for detector resolution and acceptance effects and is compared to various models.
The momentum-weighted sum of the charges of tracks associated to a jet is sensitive to the charge of the initiating quark or gluon. This paper presents a measurement of the distribution of momentum-weighted sums, called jet charge, in dijet events using 20.3 fb$^{-1}$ of data recorded with the ATLAS detector at $\sqrt{s}=8$ TeV in $pp$ collisions at the LHC. The jet charge distribution is unfolded to remove distortions from detector effects and the resulting particle-level distribution is compared with several models. The $p_T$-dependence of the jet charge distribution average and standard deviation are compared to predictions obtained with several LO and NLO parton distribution functions. The data are also compared to different Monte Carlo simulations of QCD dijet production using various settings of the free parameters within these models. The chosen value of the strong coupling constant used to calculate gluon radiation is found to have a significant impact on the predicted jet charge. There is evidence for a $p_{T}$-dependence of the jet charge distribution for a given jet flavor. In agreement with perturbative QCD predictions, the data show that the average jet charge of quark-initiated jets decreases in magnitude as the energy of the jet increases.
The production of $D^{*\pm}$, $D^\pm$ and $D_s^\pm$ charmed mesons has been measured with the ATLAS detector in $pp$ collisions at $\sqrt{s}=7$ TeV at the LHC, using data corresponding to an integrated luminosity of $280\,$nb$^{-1}$. The charmed mesons have been reconstructed in the range of transverse momentum $3.5<p_{\rm T}(D)<100$ GeV and pseudorapidity $|\eta(D)|<2.1$. The differential cross sections as a function of transverse momentum and pseudorapidity were measured for $D^{*\pm}$ and $D^\pm$ production. The next-to-leading-order QCD predictions are consistent with the data in the visible kinematic region within the large theoretical uncertainties. Using the visible $D$ cross sections and an extrapolation to the full kinematic phase space, the strangeness-suppression factor in charm fragmentation, the fraction of charged non-strange $D$ mesons produced in a vector state, and the total cross section of charm production at $\sqrt{s}=7$ TeV were derived.
A measurement of the production of three isolated photons in proton-proton collisions at a centre-of-mass energy $\sqrt{s}$ = 8 TeV is reported. The results are based on an integrated luminosity of 20.2 fb$^{-1}$ collected with the ATLAS detector at the LHC. The differential cross sections are measured as functions of the transverse energy of each photon, the difference in azimuthal angle and in pseudorapidity between pairs of photons, the invariant mass of pairs of photons, and the invariant mass of the triphoton system. A measurement of the inclusive fiducial cross section is also reported. Next-to-leading-order perturbative QCD predictions are compared to the cross-section measurements. The predictions underestimate the measurement of the inclusive fiducial cross section and the differential measurements at low photon transverse energies and invariant masses. They provide adequate descriptions of the measurements at high values of the photon transverse energies, invariant mass of pairs of photons, and invariant mass of the triphoton system.
Measurements are made of differential cross-sections of highly boosted pair-produced top quarks as a function of top-quark and $t\bar{t}$ system kinematic observables using proton--proton collisions at a center-of-mass energy of $\sqrt{s} = 13$ TeV. The data set corresponds to an integrated luminosity of $36.1$ fb$^{-1}$, recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Events with two large-radius jets in the final state, one with transverse momentum $p_{\rm T} > 500$ GeV and a second with $p_{\rm T}>350$ GeV, are used for the measurement. The top-quark candidates are separated from the multijet background using jet substructure information and association with a $b$-tagged jet. The measured spectra are corrected for detector effects to a particle-level fiducial phase space and a parton-level limited phase space, and are compared to several Monte Carlo simulations by means of calculated $\chi^2$ values. The cross-section for $t\bar{t}$ production in the fiducial phase-space region is $292 \pm 7 \ \rm{(stat)} \pm 76 \rm{(syst)}$ fb, to be compared to the theoretical prediction of $384 \pm 36$ fb.