Search for the decay K+ --> pi+ neutrino anti-neutrino

Adler, S. ; Atiya, M.S. ; Chiang, I-H. ; et al.
Phys.Rev.Lett. 76 (1996) 1421-1424, 1996.
Inspire Record 400971 DOI 10.17182/hepdata.50260

An upper limit on the branching ratio for the decay $K^+ \! \rightarrow \! \pi^+ \nu \overline{\nu}$ is set at $2.4 \times 10^{-9}$ at the 90\% C.L. using pions in the kinematic region $214~{\rm MeV}/c < P_\pi < 231~{\rm MeV}/c$. An upper limit of $5.2 \times 10^{-10}$ is found on the branching ratio for decays $K^+ \! \rightarrow \! \pi^+ X^0$, where $X^0$ is any massless, weakly interacting neutral particle. Limits are also set for cases where $M_{X^0}>0$.

1 data table

Here UNSPEC is any massless, weakly interacting neutral particle. The measured exposure for the data reported is 3.49E+11 kaons stopped in a target.


Diffractive photoproduction of dijetsin $ep$ collisions at HERA

The ZEUS collaboration Chekanov, Sergei ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 55 (2008) 177-191, 2008.
Inspire Record 763404 DOI 10.17182/hepdata.63789

Diffractive photoproduction of dijets was measured with the ZEUS detector at the ep collider HERA using an integrated luminosity of 77.2 pb-1. The measurements were made in the kinematic range Q^2 < 1 GeV^2, 0.20 < y < 0.85 and x_pom < 0.025, where Q^2 is the photon virtuality, y is the inelasticity and x_pom is the fraction of the proton momentum taken by the diffractive exchange. The two jets with the highest transverse energy, E_T^jet, were required to satisfy E_T^jet > 7.5 and 6.5 GeV, respectively, and to lie in the pseudorapidity range -1.5 < eta^jet < 1.5. Differential cross sections were compared to perturbative QCD calculations using available parameterisations of diffractive parton distributions of the proton.

15 data tables

Differential cross section DSIG/DY for diffractive photoproduction of dijets as a function of Y.

Differential cross section DSIG/DM(P=5_6_7) for diffractive photoproduction of dijets as a function of M(P=5_6_7).

Differential cross section DSIG/DX(NAME=POMERON) for diffractive photoproduction of dijets as a function of X(NAME=POMERON).

More…

Measurement of Structure Dependent K^+ -> mu^+ nu gamma

The E787 collaboration Adler, S. ; Atiya, M.S. ; Chiang, I-H. ; et al.
Phys.Rev.Lett. 85 (2000) 2256-2259, 2000.
Inspire Record 525021 DOI 10.17182/hepdata.19424

We report the first measurement of a structure dependent component in the decay K^+ -> mu^+ nu gamma. Using the kinematic region where the muon kinetic energy is greater than 137 MeV and the photon energy is greater than 90 MeV, we find that the absolute value of the sum of the vector and axial-vector form factors is |F_V+F_A| =0.165 \pm 0.007 \pm 0.011. This corresponds to a branching ratio of BR(SD^+) = (1.33 \pm 0.12 \pm 0.18) \times 10^{-5}. We also set the limit -0.04 &lt; F_V-F_A &lt; 0.24 at 90% c.l.

1 data table

Q2 independence of the formfactors is assumed.


Measurement of the open-charm contribution to the diffractive proton structure function.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Nucl.Phys.B 672 (2003) 3-35, 2003.
Inspire Record 624128 DOI 10.17182/hepdata.43831

Production of D*+/-(2010) mesons in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb^{-1}. Diffractive events were identified by the presence of a large rapidity gap in the final state. Differential cross sections have been measured in the kinematic region 1.5 < Q^2 < 200 GeV^2, 0.02 < y < 0.7, x_{IP} < 0.035, beta < 0.8, p_T(D*+/-) > 1.5 GeV and |\eta(D*+/-)| < 1.5. The measured cross sections are compared to theoretical predictions. The results are presented in terms of the open-charm contribution to the diffractive proton structure function. The data demonstrate a strong sensitivity to the diffractive parton densities.

18 data tables

Total cross section for diffractive D*+- production in the stated kinematicregion.. The second DSYS uncertainty arises from the subtraction of the proton-dissociative background.

The differential cross section as a function of X(NAME=POMERON).

The differential cross section as a function of transverse momentum.

More…

Compton Scattering from the Deuteron and Extracted Neutron Polarizabilities

Lundin, M. ; Adler, J.O. ; Boland, M. ; et al.
Phys.Rev.Lett. 90 (2003) 192501, 2003.
Inspire Record 586101 DOI 10.17182/hepdata.31727

Differential cross sections for Compton scattering from the deuteron were measured at MAX-lab for incident photon energies of 55 MeV and 66 MeV at nominal laboratory angles of $45^\circ$, $125^\circ$, and $135^\circ$. Tagged photons were scattered from liquid deuterium and detected in three NaI spectrometers. By comparing the data with theoretical calculations in the framework of a one-boson-exchange potential model, the sum and difference of the isospin-averaged nucleon polarizabilities, $\alpha_N + \beta_N = 17.4 \pm 3.7$ and $\alpha_N - \beta_N = 6.4 \pm 2.4$ (in units of $10^{-4}$ fm$^3$), have been determined. By combining the latter with the global-averaged value for $\alpha_p - \beta_p$ and using the predictions of the Baldin sum rule for the sum of the nucleon polarizabilities, we have obtained values for the neutron electric and magnetic polarizabilities of $\alpha_n= 8.8 \pm 2.4$(total) $\pm 3.0$(model) and $\beta_n = 6.5 \mp 2.4$(total) $\mp 3.0$(model), respectively.

6 data tables

Centre of mass differential cross sections for deuteron compton scattering at incident photon energy 54.6 MeV.

Centre of mass differential cross sections for deuteron compton scattering at incident photon energy 54.9 MeV.

Centre of mass differential cross sections for deuteron compton scattering at incident photon energy 55.9 MeV.

More…

Study of deep inelastic inclusive and diffractive scattering with the ZEUS forward plug calorimeter.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 713 (2005) 3-80, 2005.
Inspire Record 675372 DOI 10.17182/hepdata.11816

Deep inelastic scattering and its diffractive component, ep -> e'gamma*p ->e'XN, have been studied at HERA with the ZEUS detector using an integrated luminosity of 4.2 pb-1. The measurement covers a wide range in the gamma*p c.m. energy W (37 - 245 GeV), photon virtuality Q2 (2.2 - 80 GeV2) and mass Mx. The diffractive cross section for Mx > 2 GeV rises strongly with W: the rise is steeper with increasing Q2. The latter observation excludes the description of diffractive deep inelastic scattering in terms of the exchange of a single Pomeron. The ratio of diffractive to total cross section is constant as a function of W, in contradiction to the expectation of Regge phenomenology combined with a naive extension of the optical theorem to gamma*p scattering. Above Mx of 8 GeV, the ratio is flat with Q2, indicating a leading-twist behaviour of the diffractive cross section. The data are also presented in terms of the diffractive structure function, F2D(3)(beta,xpom,Q2), of the proton. For fixed beta, the Q2 dependence of xpom F2D(3) changes with xpom in violation of Regge factorisation. For fixed xpom, xpom F2D(3) rises as beta -> 0, the rise accelerating with increasing Q2. These positive scaling violations suggest substantial contributions of perturbative effects in the diffractive DIS cross section.

135 data tables

Measurement of the proton structure function F2 at Q**2 = 2.7 GeV**2.

Measurement of the proton structure function F2 at Q**2 = 4.0 GeV**2.

Measurement of the proton structure function F2 at Q**2 = 6.0 GeV**2.

More…

Event shapes in deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 767 (2007) 1-28, 2007.
Inspire Record 714503 DOI 10.17182/hepdata.11818

Mean values and differential distributions of event-shape variables have been studied in neutral current deep inelastic scattering using an integrated {luminosity} of 82.2 pb$^{-1}$ collected with the ZEUS detector at HERA. The kinematic range was $80 &lt; Q^2 &lt; 20 480\gev^2$ and $0.0024 &lt; x &lt; 0.6$, where $Q^2$ is the virtuality of the exchanged boson and $x$ is the Bjorken variable. The data are compared with a model based on a combination of next-to-leading-order QCD calculations with next-to-leading-logarithm corrections and the Dokshitzer-Webber non-perturbative power corrections. The power-correction method provides a reasonable description of the data for all event-shape variables studied. Nevertheless, the lack of consistency of the determination of $\alpha_s$ and of the non-perturbative parameter of the model, $\albar$, suggests the importance of higher-order processes that are not yet included in the model.

69 data tables

Mean value of the event shape variable 1-THRUST(C=T).

Mean value of the event shape variable B(C=T).

Mean value of the event shape variable RHO**2.

More…

Measurement of neutral current cross sections at high Bjorken-x with the ZEUS detector at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 49 (2007) 523-544, 2007.
Inspire Record 723329 DOI 10.17182/hepdata.11718

A new method is employed to measure the neutral current cross section up to Bjorken-x values of one with the ZEUS detector at HERA using an integrated luminosity of 65.1 pb-1 for e+p collisions and 16.7 pb-1 for e-p collisions at sqrt{s}=318 GeV and 38.6 pb-1 for e+p collisions at sqrt{s}=300 GeV. Cross sections have been extracted for Q2 >= 648 GeV2 and are compared to predictions using different parton density functions. For the highest x bins, the data have a tendency to lie above the expectations using recent parton density function parametrizations.

114 data tables

The double differential cross section for the 96-97 E+ P NC scattering data.

The double differential cross section for the 96-97 E+ P NC scattering data.

The double differential cross section for the 96-97 E+ P NC scattering data.

More…

High-E_T dijet photoproduction at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Phys.Rev.D 76 (2007) 072011, 2007.
Inspire Record 753991 DOI 10.17182/hepdata.45426

The cross section for high-E_T dijet production in photoproduction has been measured with the ZEUS detector at HERA using an integrated luminosity of 81.8 pb-1. The events were required to have a virtuality of the incoming photon, Q^2, of less than 1 GeV^2 and a photon-proton centre-of-mass energy in the range 142 < W < 293 GeV. Events were selected if at least two jets satisfied the transverse-energy requirements of E_T(jet1) > 20 GeV and E_T(jet2) > 15 GeV and pseudorapidity requirements of -1 < eta(jet1,2) < 3, with at least one of the jets satisfying -1 < eta(jet) < 2.5. The measurements show sensitivity to the parton distributions in the photon and proton and effects beyond next-to-leading order in QCD. Hence these data can be used to constrain further the parton densities in the proton and photon.

19 data tables

Cross section D(SIG)/(ET(P=4)+ET(P=5))/2 as a function of (ET(P=4)+ET(P=5))/2 for X(C=GAMMA,OBS) > 0.75 .

Cross section D(SIG)/(ET(P=4)+ET(P=5))/2 as a function of (ET(P=4)+ET(P=5))/2 for X(C=GAMMA,OBS) <= 0.75 .

Cross section D(SIG)/ET(P=4) as a function of ET(P=4) for X(C=GAMMA,OBS) > 0.75 .

More…

Dijet production in diffractive deep inelastic scattering at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 52 (2007) 813-832, 2007.
Inspire Record 757973 DOI 10.17182/hepdata.45428

The production of dijets in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of $61 \pbi$. The dijet cross section has been measured for virtualities of the exchanged virtual photon, $5 < Q^2 < 100 \gev^2$, and $\gamma^{*} p$ centre-of-mass energies, 100 < W < 250 GeV. The jets, identified using the inclusive k_{T} algorithm in the $\gamma^* p$ frame, were required to have a transverse energy $E^*_{T, \rm jet} > 4 \gev$ and the jet with the highest transverse energy was required to have $E^*_{T,\rm jet} > 5 \gev$. All jets were required to be in the pseudorapidity range $-3.5 < \eta^*_{\rm jet} < 0$. The differential cross sections are compared to leading-order predictions and next-to-leading-order QCD calculations based on recent diffractive parton densities extracted from inclusive diffractive deep inelastic scattering data.

17 data tables

Total di-jet cross section SIG as a function of Q**2 .

Distribution of D(SIG)/DQ**2 as a function of Q**2 .

Distribution of D(SIG)/DW as a function of W .

More…