The polarization of Lambda, Anti-Lambda, Xi, and Anti-Xi hyperons along the angular momentum of the system has been measured in isobar collisions of Ru+Ru and Zr+Zr at $\sqrt{s_{NN}}$ = 200 GeV with the STAR detector at RHIC. The polarization dependence on collision centrality is explored and found to show an increasing trend in more peripheral collisions. Dependencies on transverse momentum and pseudorapidity are investigated for Lambda and Anti-Lambda hyperons, but no significant dependence has been observed. The polarization measurements for Lambda and Anti-Lambda are consistent with each other, indicating little contribution of the spin-magnetic coupling in the observed polarization. The results for Lambda hyperons measurements are qualitatively consistent with hydrodynamic calculations incorporating effects from shear-induced polarization and thermal vorticity, and show no obvious system size dependence in comparison with previous results in Au+Au collisions. For the first time, the dependence of the polarization on the hyperon's emission azimuthal angle with respect to the second harmonic event plane is extracted and shows stronger polarization for the in-plane emitted hyperons at the level of 2.4$\sigma$ significance in 20-50% centrality. The measurements of Xi hyperons polarization via the polarization transfer analysis exhibit a finite positive polarization, 2.9$\sigma$ significance in 20-50% centrality, slightly enhanced compared to the inclusive Lambda polarization.
Resolutions of the first-order event plane from the ZDC-SMDs as a function of collision centrality in Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Resolutions of the second-order event plane from the TPC as a function of collision centrality in Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Global polarization of $\Lambda$ and $\bar\Lambda$ and their difference as a function of centrality in combined Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}}$ = 200 GeV.
A search is presented for hadronic signatures of beyond the Standard Model (BSM) physics, with an emphasis on signatures of a strongly-coupled hidden dark sector accessed via resonant production of a $Z'$ mediator. The ATLAS experiment dataset collected at the Large Hadron Collider from 2015 to 2018 is used, consisting of proton-proton collisions at $\sqrt{s}$ = 13 TeV and corresponding to an integrated luminosity of 140 fb$^{-1}$. The $Z'$ mediator is considered to decay to two dark quarks, which each hadronize and decay to showers containing both dark and Standard Model particles, producing a topology of interacting and non-interacting particles within a jet known as ``semi-visible". Machine learning methods are used to select these dark showers and reject the dominant background of mismeasured multijet events, including an anomaly detection approach to preserve broad sensitivity to a variety of BSM topologies. A resonance search is performed by fitting the transverse mass spectrum based on a functional form background estimation. No significant excess over the expected background is observed. Results are presented as limits on the production cross section of semi-visible jet signals, parameterized by the fraction of invisible particles in the decay and the $Z'$ mass, and by quantifying the significance of any generic Gaussian-shaped mass peak in the anomaly region.
Acceptance times efficiency weighted yields across the signal grid.
The 95% CL limits on the cross-section $\sigma(pp \rightarrow Z' \rightarrow \chi \chi$) times branching ratio B in fb with all statistical and systematic uncertainties, for the $R_{\text{inv}}=$0.2 signal points.
The 95% CL limits on the cross-section $\sigma(pp \rightarrow Z' \rightarrow \chi \chi$) times branching ratio B in fb with all statistical and systematic uncertainties, for the $R_{\text{inv}}=$0.4 signal points.
This work reports femtoscopic correlations of p$-$p ($\bar{\rm p}-\bar{\rm p}$) and p$-$d ($\bar{\rm p}-\bar{\rm d}$) pairs measured in Pb$-$Pb collisions at center-of-mass energy $\sqrt{s_{\rm NN}}$ = 5.02 TeV by the ALICE Collaboration. A fit to the measured proton-proton correlation functions allows one to extract the dependence of the nucleon femtoscopic radius of the particle-emitting source on the pair transverse mass ($m_\text{T}$) and on the average charge particle multiplicity $\langle\text{dN}_\text{ch}/\text{d}\eta\rangle^{1/3}$ for three centrality intervals (0$-$10$\%$, 10$-$30$\%$, 30$-$50$\%$). In both cases, the expected power-law and linear scalings are observed, respectively. The measured p$-$d correlations can be described by both two- and three-body calculations, indicating that the femtoscopy observable is not sensitive to the short-distance features of the dynamics of the p$-$(p$-$n) system, due to the large inter-particle distances in Pb$-$Pb collisions at the LHC. Indeed, in this study, the minimum measured femtoscopic source sizes for protons and deuterons have a minimum value at $2.73^{+0.05}_{-0.05}$ and $3.10^{+1.04}_{-0.86}$ fm, respectively, for the 30$-$50$\%$ centrality collisions. Moreover, the $m_{\rm{T}}$-scaling obtained for the p$-$p and p$-$d systems is compatible within 1$\sigma$ of the uncertainties. These findings provide new input for fundamental studies on the production of light (anti)nuclei under extreme conditions.
proton-proton (same charge) correlation function for centrality 0-10% from Pb-Pb collisions at 5020 GeV
proton-proton (same charge) correlation function for centrality 10-30% from Pb-Pb collisions at 5020 GeV
proton-proton (same charge) correlation function for centrality 30-50% from Pb-Pb collisions at 5020 GeV
We present a search for the rare flavor-changing neutral-current decay $B^0 \to K^{\ast 0} \tau^+ \tau^-$ with data collected by the Belle II experiment at the SuperKEKB electron-positron collider. The analysis uses a 365 fb$^{-1}$ data sample recorded at the center-of-mass energy of the $\Upsilon(4S)$ resonance. One of the $B$ mesons produced in the $\Upsilon(4S)\to B^0 \bar{B}^0$ process is fully reconstructed in a hadronic decay mode, while its companion $B$ meson is required to decay into a $K^{\ast 0}$ and two $\tau$ leptons of opposite charge. The $\tau$ leptons are reconstructed in final states with a single electron, muon, charged pion or charged $\rho$ meson, and additional neutrinos. We set an upper limit on the branching ratio of $BR(B^0 \to K^{\ast 0} \tau^+ \tau^-) < 1.8 \times 10^{-3}$ at the 90% confidence level, which is the most stringent constraint reported to date.
- - - - - - - - Overview of HEPData Record - - - - - - - -<br/><br/></ul><b>Post-fit yields:</b><ul><li><a href="159541?version=1&table=Postfit%20yields:%20fit%20variable">Fit variable $\eta(\rm{BDT})$</a></ul><b>Signal $q^{2}$:</b><ul><li><a href="159541?version=1&table=Generated%20$q^2$"> Generated $q^{2}$ distribution </a></ul><b>Signal selection efficiency:</b><ul><li><a href="159541?version=1&table=Selection%20efficiency"> Selection efficieny in signal region </a>
Observed yields and fit results in bins of $\eta(\rm{BDT})$ as obtained by the fit on the four signal categories, corresponding to an integrated luminosity of 365 fb$^{-1}$. The yields are shown for $B^0 \rightarrow K^{\ast 0}\tau\tau$ signal and the two background components ($B\bar{B}$ decays and $q\bar{q}$ continuum).
Distribution of the di-tau invariant mass squared $q^2$ assumed for the generated signal $B^0 \rightarrow K^{\ast 0}\tau\tau$ events.
This Letter presents measurements of long-range transverse-momentum correlations using a new observable, $v_{0}(p_\mathrm{T})$, which serves as a probe of radial flow and medium properties in heavy-ion collisions. Results are reported for inclusive charged particles, pions, kaons, and protons across various centrality intervals in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV, recorded by the ALICE detector. A pseudorapidity-gap technique, similar to that used in anisotropic-flow studies, is employed to suppress short-range correlations. At low $p_\mathrm{T}$, a characteristic mass ordering consistent with hydrodynamic collective flow is observed. At higher $p_\mathrm{T}$ ($> 3$ GeV/$c$), protons exhibit larger $v_{0}(p_\mathrm{T})$ than pions and kaons, in agreement with expectations from quark-recombination models. These results are sensitive to the bulk viscosity and the equation of state of the QCD medium formed in heavy-ion collisions.
The $p_\mathrm{T}$ dependence of $v_{0}(p_\mathrm{T})$ for inclusive charged particles is measured in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV within the 10$–$20% centrality interval, using a two-particle correlation method with a pseudorapidity gap of $\Delta\eta = 0.4$.
The $p_\mathrm{T}$ dependence of $v_{0}(p_\mathrm{T})$ for inclusive charged particles is measured in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV within the 30$–$40% centrality interval, using a two-particle correlation method with a pseudorapidity gap of $\Delta\eta = 0.4$.
The $p_\mathrm{T}$ dependence of $v_{0}(p_\mathrm{T})$ for inclusive charged particles is measured in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV within the 60$–$70% centrality interval, using a two-particle correlation method with a pseudorapidity gap of $\Delta\eta = 0.4$.
The formation of light (anti)nuclei with mass number A of a few units (e.g., d, $^3$He, and $^4$He) in high-energy hadronic collisions presents a longstanding mystery in nuclear physics [1,2]. It is not clear how nuclei bound by a few MeV can emerge in environments characterized by temperatures above 100 MeV [3-5], about 100,000 times hotter than the center of the Sun. Despite extensive studies, this question remained unanswered. The ALICE Collaboration now addresses it with a novel approach using deuteron-pion momentum correlations in proton-proton (pp) collisions at the Large Hadron Collider (LHC). Our results provide model-independent evidence that about 80% of the observed (anti)deuterons are produced in nuclear fusion reactions [6] following the decay of short-lived resonances, such as the $\Delta (1232)$. These findings resolve a crucial gap in our understanding of nucleosynthesis in hadronic collisions. Beyond answering the fundamental question on how nuclei are formed in hadronic collisions, the results can be employed in the modeling of the production of light and heavy nuclei in cosmic rays [7] and dark matter decays [8,9].
Measured $\pi^{+}$–d$\oplus\pi^{-}$–$\overline{\mathrm{d}}$ (left panel) correlation function.
Measured $\pi^{-}$–d$\oplus\pi^{+}$–$\overline{\mathrm{d}}$ (right panel) correlation function.
The extracted kinetic decoupling temperature is derived from $\pi^{+}$–d correlation functions.
Heavy-flavor quarks produced in proton-proton (pp) collisions provide a unique opportunity to investigate the evolution of quark-initiated parton showers from initial hard scatterings to final-state hadrons. By examining jets that contain heavy-flavor hadrons, this study explores the effects of both perturbative and non-perturbative QCD on jet formation and structure. The angular differences between various jet axes, $\Delta R_{\rm axis}$, offer insight into the radiation patterns and fragmentation of charm quarks. The first measurement of D$^{0}$-tagged jet axes differences in pp collisions at $\sqrt{s}=5.02$ TeV by the ALICE experiment at the LHC is presented for jets with transverse momentum $p_{\rm T}^{\rm ch~jet} \geq 10$${\rm GeV}/c$ and D$^0$ mesons with $p_{\rm T}^{\rm D^{0}} \geq 5$${\rm GeV}/c$. In this D$^0$-meson-tagged jet measurement, three jet axis definitions, each with different sensitivities to soft, wide-angle radiation, are used: the Standard axis, Soft Drop groomed axis, and Winner-Takes-All axis. Measurements of the radial distributions of D$^0$ mesons with respect to the jet axes, $\Delta R_{\mathrm{axis-D^0}}$, are reported, along with the angle, $\Delta R_{\mathrm{axis}}$, between the three jet axes. The D$^{0}$ meson emerges as the leading particle in these jets, closely aligning with the Winner-Takes-All axis and diverging from the Standard jet axis. The results also examine how varying the sensitivity to soft radiation with grooming influences the orientation of the Soft Drop jet axis, and uncover that charm-jet structure is more likely to survive grooming when the Soft Drop axis is further from the D$^{0}$ direction, providing further evidence of the dead-cone effect recently measured by ALICE.
$\Delta R_{\rm axis}$ distribution for $\rm STD-D^0$ for $\rm D^0$-tagged jets of $R=0.4$, in the intervals $10<p_{\rm T}^{\rm ch \ jet}<20 \ {\rm GeV}/c$ and $5<p_{\rm T}^{\rm D^0}<20 \ {\rm GeV}/c$.
$\Delta R_{\rm axis}$ distribution for $\rm WTA-D^0$ for $\rm D^0$-tagged jets of $R=0.4$, in the intervals $10<p_{\rm T}^{\rm ch \ jet}<20 \ {\rm GeV}/c$ and $5<p_{\rm T}^{\rm D^0}<20 \ {\rm GeV}/c$.
$\Delta R_{\rm axis}$ distribution for $\rm STD-WTA$ for $\rm D^0$-tagged jets of $R=0.4$, in the intervals $10<p_{\rm T}^{\rm ch \ jet}<20 \ {\rm GeV}/c$ and $5<p_{\rm T}^{\rm D^0}<20 \ {\rm GeV}/c$.
Femtoscopy of non-identical particle pairs has been instrumental for precision measurements of both two-particle sources and the final-state interactions in high-energy elementary and heavy-ion collisions. The majority of measurements assessing the source properties are based on identical particle pairs, providing direct access to the characteristics of the single-particle source. The work in this paper demonstrates, via femtoscopy measurements of charged pion-deuteron pairs in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, the feasibility of accessing the characteristics of the single-particle femtoscopic source by using particle pairs with large mass differences such as pions and deuterons. The first experimental results of the measurement of deuteron source sizes in ultrarelativistic heavy-ion collisions are presented. The results show good agreement with the trend derived from other charged hadrons such as pions, kaons, and protons as a function of transverse mass, indicating similar source properties
pion-deuteron (same charge) correlation function for centrality 0-10% from Pb-Pb collisions at 5020 GeV
pion-deuteron (same charge) correlation function for centrality 10-30% from Pb-Pb collisions at 5020 GeV
pion-deuteron (same charge) correlation function for centrality 30-50% from Pb-Pb collisions at 5020 GeV
The pseudorapidity distribution of charged hadrons produced in Au+Au collisions at a center-of-mass energy of $\sqrt{s_\mathrm{NN}} = 200$ GeV is measured using data collected by the sPHENIX detector. Charged hadron yields are extracted by counting cluster pairs in the inner and outer layers of the Intermediate Silicon Tracker, with corrections applied for detector acceptance, reconstruction efficiency, combinatorial pairs, and contributions from secondary decays. The measured distributions cover $|\eta| < 1.1$ across various centralities, and the average pseudorapidity density of charged hadrons at mid-rapidity is compared to predictions from Monte Carlo heavy-ion event generators. This result, featuring full azimuthal coverage at mid-rapidity, is consistent with previous experimental measurements at the Relativistic Heavy Ion Collider, thereby supporting the broader sPHENIX physics program.
Nch, Npart, and Nch/(Npart/2) values in Table 4, presented in Figure 6.
Nch as a function of $\eta$, presented in Figure 5.
This paper reports measurements of the transverse energy per unit pseudorapidity ($dE_{T}/dη$) produced in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, performed with the sPHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The results cover the pseudorapidity range $\left|η\right| < 1.1$ and constitute the first such measurement performed using a hadronic calorimeter at RHIC. Measurements of $dE_{T}/dη$ are presented for a range of centrality intervals and the average $dE_{T}/dη$ as a function of the number of participating nucleons, $N_{\mathrm{part}}$, is compared to a variety of Monte Carlo heavy-ion event generators. The results are in agreement with previous measurements at RHIC, and feature an improved granularity in $η$ and improved precision in low-$N_{\mathrm{part}}$ events.
An example of a reconstructed EMCal di-cluster invariant mass distribution, similar to those used for in situ EMCal tower calibrations. The distributions are made from EMCal cluster pairs using Run 2024 Au+Au data. The prominent peak arises from $\pi^{0}\to\gamma\gamma$ decays.
An example of a reconstructed EMCal di-cluster invariant mass distribution, similar to those used for in situ EMCal tower calibrations. The distributions are made from EMCal cluster pairs using a GEANT-4 simulation of HIJING events. The prominent peak arises from $\pi^{0}\to\gamma\gamma$ decays.
An example of the measured energy distribution in a single OHCal tower, showing the MIP distribution from cosmic-ray data from the detector.