Measurement of f(c --> D*+ X), f(b --> D*+ X) and Gamma(c anti-c)/Gamma(had) using D*+- mesons.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Eur.Phys.J.C 1 (1998) 439-459, 1998.
Inspire Record 447145 DOI 10.17182/hepdata.47409

The production rates of D^*+/- mesons in charm and bottom events at centre-of-mass energies of about 91 GeV and the partial width of primary cc(bar) pairs in hadronic Z^0 decays have been measured at LEP using almost 4.4 million hadronic Z^0 decays collected with the OPAL detector between 1990 and 1995. Using a combination of several charm quark tagging methods based on fully and partially reconstructed D^*+/- mesons, and a bottom tag based on identified muons and electrons, the hadronisation fractions of charm and bottom quarks into D^*+/- mesons have been found to be: f(b -> D^*+ X) = 0.173 +/- 0.016 +/- 0.012 and f(c -> D^*+ X) = 0.222 +/- 0.014 +/- 0.014 The fraction of cc(bar) events in hadronic Z^0 decays, Gamma_cc(bar)/Gamma_had = Gamma(Z^0 -> cc(bar))/Gamma(Z^0 -> hadrons), is determined to be Gamma_cc(bar)/Gamma_had = 0.180 +/- 0.011 +/- 0.012 +/- 0.006 In all cases the first error is statistical, and the second one systematic. The last error quoted for Gamma_cc(bar)/Gamma_had is due to external branching ratios.

3 data tables

No description provided.

No description provided.

The second syst. errors results due to extranal branching ratios. Charge conjugated states are implied. FD is considered as a quark fragmentation fraction. Sqrt(s(E+ E-)) = 91.2 GeV.


Measurement of the photon structure function F2(gamma) at low x.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 412 (1997) 225-234, 1997.
Inspire Record 447187 DOI 10.17182/hepdata.49560

Deep inelastic electron-photon scattering is studied using e+e- data collected by the OPAL detector at centre-of-mass energies sqrt{s_ee} ~ M_{Z^0}. The photon structure function F_2^gamma(x,Q^2) is explored in a Q^2 range of 1.1 to 6.6 GeV/c^2 at lower x values than ever before. To probe this kinematic region events are selected with a beam electron scattered into one of the OPAL luminosity calorimeters at scattering angles between 27 and 55 mrad. A measurement is presented of the photon structure function F_2^gamma(x,Q^2) at <Q^2> = 1.86 GeV^2 and 3.76 GeV^2 in five logarithmic x bins from 0.0025 to 0.2.

2 data tables

Measurement of the hadron photon structure function. Systematic errors do not contain any effects caused by the four momentum of the quasi-real photon being non zero.

Measurement of the hadron photon structure function. Systematic errors do not contain any effects caused by the four momentum of the quasi-real photon being non zero.


Analysis of hadronic final states and the photon structure function F2(gamma) in deep inelastic electron photon scattering at LEP.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 74 (1997) 33-48, 1997.
Inspire Record 426209 DOI 10.17182/hepdata.47770

Deep inelastic electron-photon scattering is studied in the Q2 ranges from 6 to 30 GeV2 and from 60 to 400 GeV2 using the full sample of LEP data taken with the OPAL detector at centre-of-mass energies close to the Z0 mass, with an integrated luminosity of 156.4 pb−1. Energy flow distributions and other properties of the measured hadronic final state are compared with the predictions of Monte Carlo models, including HERWIG and PYTHIA. Sizeable differences are found between the data and the models, especially at low values of the scaling variable x. New measurements are presented of the photon structure function $F_2^{αmma }(x,Q^2)$, allowing for the first time for uncertainties in the description of the final state by different Monte Carlo models. The differences between the data and the models contribute significantly to the systematic errors on $F_2^{αmma }$. The slope ${⤪ d}(F_2^{αmma }/←pha )/{⤪ d ln} Q^2$ is measured to be $0.13_{-0.04}^{+0.06}$.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Test of QCD analytic predictions for the multiplicity ratio between gluon and quark jets.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Phys.Lett.B 388 (1996) 659-672, 1996.
Inspire Record 423486 DOI 10.17182/hepdata.47714

Gluon jets with about 39 GeV energy are identified in hadronic Z 0 decays by tagging two jets in the same hemisphere of an event as quark jets. Identifying the gluon jet to be all the particles observed in the hemisphere opposite to that containing the two tagged jets yields an inclusive gluon jet definition corresponding to that used in analytic calculations, allowing the first direct test of those calculations. In particular, this jet definition yields results which are only weakly dependent on a jet finding algorithm. We find r ch. =1.552±0.0041 ( stat ) ±0.061 ( syst. ) for the ratio of the mean charged particle multiplicity in gluon jets to that in light quark uds jets, where the uds jets are identified using an inclusive jet definition similar to that used for the gluon jets. Our result is in general agreement with the prediction of a recent analytic calculation which incorporates energy conservation into the parton shower branching processes, but is considerably smaller than analytic predictions which do not incorporate energy conservation.

2 data tables

Mean charged particle multiplicity in gluon jets.

Mean charged particle multiplicity in single hemisphere light quark jets.


A measurement of the charm and bottom forward-backward asymmetries using D mesons at LEP.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Z.Phys.C 73 (1997) 379-395, 1997.
Inspire Record 421995 DOI 10.17182/hepdata.47946

A measurement of the charm and bottom forward-backward asymmetry in e+e− annihilations is presented at energies on and around the peak of the Z0 resonance. Decays of the Z0 into charm and bottom quarks are tagged using D mesons identified in about 4 million hadronic decays of the Z0 boson recorded with the OPAL detector at LEP between 1990 and 1995. Approximately 33000 D mesons are tagged in seven different decay modes. From these the charm and bottom asymmetries are measured in three energy ranges around the Z0 peak: \(\matrix {A_{\rm FB}^{\rm c}=0.039\pm 0.051\pm 0.009\cr A_{\rm FB}^{\rm c}=0.063\pm 0.012\pm 0.006\cr A_{\rm FB}^{\rm c}=0.158\pm 0.041\pm 0.011}\)\(\matrix {A_{\rm FB}^{\rm b}=0.086\pm 0.108\pm 0.029\cr A_{\rm FB}^{\rm b}=0.094\pm 0.027\pm 0.022\cr A_{\rm FB}^{\rm b}=0.021\pm 0.090\pm 0.026}\)\(\matrix{\langle E_{cm}\rangle =89.45\ {\rm GeV}\cr \langle E_{cm}\rangle =91.22\ {\rm GeV}\cr \langle E_{cm}\rangle =93.00\ {\rm GeV}}\) The results are in agreement with the predictions of the standard model and other measurements at LEP.

2 data tables

Forward-backward asymmetry.

No description provided.


Production of K0 and Lambda in hadronic Z decays

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Z.Phys.C 64 (1994) 361-374, 1994.
Inspire Record 375060 DOI 10.17182/hepdata.48239

Measurements of the inclusive cross-sections forK0 and Λ production in hadronic decays of the Z are presented together with measurements of two-particle correlations within pairs of Λ andK0. The results are compared with predictions from the hadronization models Jetset, based on string fragmentation, and Herwig, based on cluster decays. TheK0 spectrum is found to be harder than predicted by both models, while the Λ spectrum is softer than predicted. The correlation measurements are all reproduced well by Jetset, while Herwig misses some of the qualitative features and overestimates the size of the\(\Lambda \bar \Lambda \) correlation. Finally, the possibility of Bose-Einstein correlation in theKS0KS0 system is discussed.

7 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the e+ e- ---> gamma gamma (gamma) cross-section at LEP energies

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 327 (1994) 386-396, 1994.
Inspire Record 373116 DOI 10.17182/hepdata.48343

The total and the differential cross sections for the reaction e + e − → γγ ( γ ) have been measured with the DELPHI detector at LEP using an integrated luminosity of 36.9 pb −1 . The results agree with the QED predictions and consequently there is no evidence for non-standard channels with the same experimental signature. The lower limits obtained on the QED cutoff parameters are Λ + > 143 GeV and Λ − > 120 GeV, and the lower bound on the mass of an excited electron with an effective coupling constant λ γ = 1 is 132 GeV/ c 2 . Upper limits on the branching ratios for the decays Z 0 → γγ , Z 0 → π 0 γ , Z 0 → ηγ and Z 0 → γγγ have been determined to be 5.5 × 10 −5 , 5.5 × 10 −5 , 8.0 × 10 −5 , and 1.7 × 10 −5 respectively. All the limits are at the 95% confidence level.

4 data tables

1990 energies are 88.223, 89.222, 90.217, 91.217, 92.209, 93.208 and 94.202 GeV.. 1991 energies are 88.465, 89.460, 90.208, 91.225, 91.954, 92.953, and 93.703 GeV.. 1992 energy is 91.278 GeV.

Average of all data.

No description provided.

More…

Measurements of the line shape of the Z0 and determination of electroweak parameters from its hadronic and leptonic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Nucl.Phys.B 417 (1994) 3-57, 1994.
Inspire Record 372144 DOI 10.17182/hepdata.48413

During the LEP running periods in 1990 and 1991 DELPHI has accumulated approximately 450 000 Z 0 decays into hadrons and charged leptons. The increased event statistics coupled with improved analysis techniques and improved knowledge of the LEP beam energies permit significantly better measurements of the mass and width of the Z 0 resonance. Model independent fits to the cross sections and leptonic forward- backward asymmetries yield the following Z 0 parameters: the mass and total width M Z = 91.187 ± 0.009 GeV, Γ Z = 2.486 ± 0.012 GeV, the hadronicf and leptonic partials widths Γ had = 1.725 ± 0.012 GeV, Γ ℓ = 83.01 ± 0.52 MeV, the invisible width Γ inv = 512 ± 10 MeV, the ratio of hadronic to leptonic partial widths R ℓ = 20.78 ± 0.15, and the Born level hadronic peak cross section σ 0 = 40.90 ± 0.28 nb. Using these results and the value of α s determined from DELPHI data, the number of light neutrino species is determined to be 3.08 ± 0.05. The individual leptonic widths are found to be: Γ e = 82.93 ± 0.70 MeV, Γ μ = 83.20 ± 1.11 MeV and Γ τ = 82.89 ± 1.31 MeV. Using the measured leptonic forward-backward asymmetries and assuming lepton universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are found to be g V ℓ 2 = (1.47 ± 0.51) × 10 −3 and g A ℓ 2 = 0.2483 ± 0.0016. A full Standard Model fit to the data yields a value of the top mass m t = 115 −82 +52 (expt.) −24 +52 (Higgs) GeV, corresponding to a value of the weak mixing angle sin 2 θ eff lept = 0.2339±0.0015 (expt.) −0.0004 +0.0001 (Higgs). Values are obtained for the variables S and T , or ϵ 1 and ϵ 3 which parameterize electroweak loop effects.

26 data tables

Hadronic cross sections from the 1990 data set. Additional systematic uncertainties come from efficiencies and background of 0.4 pct in addition to the luminosity uncertainty 0.7 pct.

Hadronic cross sections from the 1991 data set. Additional systematic uncertainties come from efficiencies and background of 0.2 pct in addition to the luminosity uncertainty 0.6 pct.

E+ E- cross sections from the 1990 data set for both final state fermions in the polar angle range 44 to 136 degrees and accollinearity < 10 degrees (the s + t data).

More…

Production of charmed mesons in Z decays

The ALEPH collaboration Buskulic, D. ; De Bonis, I. ; Decamp, D. ; et al.
Z.Phys.C 62 (1994) 1-14, 1994.
Inspire Record 363280 DOI 10.17182/hepdata.48368

The production of charmed mesons$$\mathop {D^0 }\limits^{( - )} $$,D

4 data tables

No description provided.

The DSYS error is due to the error in the branching ratio.

The DSYS error is due to the error in the branching ratio.

More…

Production of Lambda and Lambda anti-Lambda correlations in the hadronic decays of the Z0

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 318 (1993) 249-262, 1993.
Inspire Record 360638 DOI 10.17182/hepdata.48369

An analysis of the production of the Λ baryon in the hadronic decays of the Z 0 is presented, based on about 993K multihadronic events collected by the DELPHI detector at LEP during 1991 and 1992. The differencial cross section of the Λ and the correlations between Λ and Λ produced in the same event are compared to current models, based both on string fragmentation and on cluster decay. The predictions of the string fragmentation model are found to give satisfactory agreements with the data, clearly better than those of the cluster model.

6 data tables

No description provided.

Combined LAMBDA and LAMBDABAR multiplicity.

Errors contain systematic uncertainties.

More…