Version 3
Transverse momentum spectra and nuclear modification factors of charged particles in Xe-Xe collisions at $\sqrt{s_{\rm NN}}$ = 5.44 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Lett.B 788 (2019) 166-179, 2019.
Inspire Record 1672790 DOI 10.17182/hepdata.85727

Transverse momentum ($p_{\rm T}$) spectra of charged particles at mid-pseudorapidity in Xe-Xe collisions at $\sqrt{s_{\rm NN}}$ = 5.44 TeV measured with the ALICE apparatus at the Large Hadron Collider are reported. The kinematic range $0.15 < p_{\rm T} < 50$ GeV/$c$ and $|\eta| < 0.8$ is covered. Results are presented in nine classes of collision centrality in the 0-80% range. For comparison, a pp reference at the collision energy of $\sqrt{s}$ = 5.44 TeV is obtained by interpolating between existing \pp measurements at $\sqrt{s}$ = 5.02 and 7 TeV. The nuclear modification factors in central Xe-Xe collisions and Pb-Pb collisions at a similar center-of-mass energy of $\sqrt{s_{\rm NN}}$ = 5.02 TeV, and in addition at 2.76 TeV, at analogous ranges of charged particle multiplicity density $\left\langle\rm{d}N_{\rm ch}/\rm{d}\eta\right\rangle$ show a remarkable similarity at $p_{\rm T}> 10$ GeV/$c$. The comparison of the measured $R_{\rm AA}$ values in the two colliding systems could provide insight on the path length dependence of medium-induced parton energy loss. The centrality dependence of the ratio of the average transverse momentum $\left\langle p_{\rm{T}}\right\rangle$ in Xe-Xe collisions over Pb-Pb collision at $\sqrt{s}$ = 5.02 TeV is compared to hydrodynamical model calculations.

8 data tables

Transverse momentum spectra of charged particles in XeXe collisions in nine centrality classes.

Interpolated pp reference spectrum and invariant cross section.

Nuclear modification factor for XeXe. Additional systematic error: 0-5 pct data: +6.1 pct -6.1 pct 5-10 pct data: +6.6 pct -6.6 pct 10-20 pct data: +7.4 pct -7.4 pct 20-30 pct data: +9.8 pct -9.8 pct 30-40 pct data: +11.5 pct -11.5 pct 40-50 pct data: +12.9 pct -12.9 pct 50-60 pct data: +13.8 pct -13.8 pct 60-70 pct data: +14.0 pct -14.0 pct 70-80 pct data: +12.9 pct -12.9 pct

More…

Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 846 (2023) 138154, 2023.
Inspire Record 2648097 DOI 10.17182/hepdata.139723

Parton energy loss in the quark-gluon plasma (QGP) is studied with a measurement of photon-tagged jet production in 1.7 nb$^{-1}$ of Pb+Pb data and 260 pb$^{-1}$ of $pp$ data, both at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV, with the ATLAS detector. The process $pp \to \gamma$+jet+$X$ and its analogue in Pb+Pb collisions is measured in events containing an isolated photon with transverse momentum ($p_\mathrm{T}$) above $50$ GeV and reported as a function of jet $p_\mathrm{T}$. This selection results in a sample of jets with a steeply falling $p_\mathrm{T}$ distribution that are mostly initiated by the showering of quarks. The $pp$ and Pb+Pb measurements are used to report the nuclear modification factor, $R_\mathrm{AA}$, and the fractional energy loss, $S_\mathrm{loss}$, for photon-tagged jets. In addition, the results are compared with the analogous ones for inclusive jets, which have a significantly smaller quark-initiated fraction. The $R_\mathrm{AA}$ and $S_\mathrm{loss}$ values are found to be significantly different between those for photon-tagged jets and inclusive jets, demonstrating that energy loss in the QGP is sensitive to the colour-charge of the initiating parton. The results are also compared with a variety of theoretical models of colour-charge-dependent energy loss.

10 data tables

The differential cross-section of photon-tagged jets as a function of jet $p_{\mathrm{T}}$ in pp collisions.

The yields of photon-tagged jets as a function of jet $p_{\mathrm{T}}$ in Pb+Pb collisions for different centrality intervals.

The nuclear modification factor of photon-tagged jets as a function of jet $p_{\mathrm{T}}$ for different centrality intervals.

More…

Study of charm hadronization with prompt $\Lambda^+_\mathrm{c}$ baryons in proton-proton and lead-lead collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 01 (2024) 128, 2024.
Inspire Record 2679262 DOI 10.17182/hepdata.135973

The production of prompt $\Lambda^+_\mathrm{c}$ baryons is measured via the exclusive decay channel $\Lambda^+_\mathrm{c}$$\to$ pK$^-\pi^+$ at a center-of-mass energy per nucleon pair of 5.02 TeV, using proton-proton (pp) and lead-lead (PbPb) collision data collected by the CMS experiment at the CERN LHC. The pp and PbPb data were obtained in 2017 and 2018 with integrated luminosities of 252 and 0.607 nb$^{-1}$, respectively. The measurements are performed within the $\Lambda^+_\mathrm{c}$ rapidity interval $\vert y \vert$$\lt$ 1 with transverse momentum ($p_\mathrm{T}$) ranges of 3-30 and 6-40 GeV/$c$ for pp and PbPb collisions, respectively. Compared to the yields in pp collisions scaled by the expected number of nucleon-nucleon interactions, the observed yields of $\Lambda^+_\mathrm{c}$ with $p_\mathrm{T}$$\gt$ 10 GeV/$c$ are strongly suppressed in PbPb collisions. The level of suppression depends significantly on the collision centrality. The $\Lambda^+_\mathrm{c}$ / D$^0$ production ratio is similar in PbPb and pp collisions at $p_\mathrm{T}$$\gt$ 10 GeV/$c$, suggesting that the coalescence process does not play a dominant role in prompt $\Lambda^+_\mathrm{c}$ baryon production at higher $p_\mathrm{T}$.

6 data tables

The product of acceptance and efficiency ($A \epsilon$) as a function of $p_{\mathrm{T}}$ for prompt $\Lambda^+_c$ in pp collisions and within centrality regions of 0-90, 0-10, 10-30, 30-50 and 50-90% in PbPb collisions.

The $p_{\mathrm{T}}$ differential cross sections for prompt $\Lambda^+_c$ production in pp collisions. The global fit uncertainty is 8.6%.

The $\mathrm{T_{AA}}$-scaled $\Lambda^+_c$ yields as a function of $p_{\mathrm{T}}$ for PbPb collisions within centrality regions of 0-90, 0-10, 10-30, 30-50 and 50-90%.

More…

Version 3
Observation of $D^0$ meson nuclear modifications in Au+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 113 (2014) 142301, 2014.
Inspire Record 1292132 DOI 10.17182/hepdata.73474

In this erratum we report changes on the $D^0$ $p_T$ spectra and nuclear modification factor ($R_{AA}$) in Au+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 200 GeV by fixing the errors in the efficiency and selection criteria that affected the Au+Au results. The p+p reference spectrum has changed as well and is updated with new fragmentation parameters.

4 data tables

$D^0$ $p_{\rm T}$ differential invariant yield in p+p collisions (open circles), which has been updated with the latest global analysis of charm fragmentation ratios from Ref and also taking into account the $p_{\rm T}$ dependence of the fragmentation ratio between $D^0$ and $D^{*{\pm}}$ from PYTHIA 6.4. The systematic uncertainties are shown as square brackets.

Centrality dependence of the $D^0$ $p_{\rm T}$ differential invariant yield in Au+Au collisions (solid symbols). The curves are number-of-binary-collision-scaled Levy functions from fitting to the p+p result (open circles), which has been updated with the latest global analysis of charm fragmentation ratios from Ref and also taking into account the $p_{\rm T}$ dependence of the fragmentation ratio between $D^0$ and $D^{*{\pm}}$ from PYTHIA 6.4. The arrow denotes the upper limit with 90% confidence level of the last data point for 10$-$40% collisions. The systematic uncertainties are shown as square brackets.

Panels (ab), $D^0$ $R_{\rm AA}$ for peripheral 40$-$80% and semi a central 10$-$40% collisions; Panel (c), $D^0$ $R_{\rm AA}$ for 0$-$10% most central events (blue circles) compared with model calculations from the TAMU (solid curve), SUBATECH (dashed curve), Torino (dot-dashed curve), Duke (long-dashed and long-dot-dashed curves), and LANL groups (filled band). The open symbol indicates the result with the extrapolated p+p reference. The vertical lines and brackets around the data points denote the statistical and systematic uncertainties respectively. The vertical bars around unity denote the overall normalization uncertainties in the Au+Au and p+p data, respectively. The $R_{\rm AA}$ probability distribution for the 0$-$0.7 GeV/$c$ data point is largely skewed. The uncertainty we report is the 68.3% probability range with respect to the measured central value assuming Gaussian distribution.

More…

Observation of the $\Upsilon$(3S) meson and suppression of $\Upsilon$ states in PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
CMS-HIN-21-007, 2023.
Inspire Record 2648528 DOI 10.17182/hepdata.130959

The production of $\Upsilon$(2S) and $\Upsilon$(3S) mesons in lead-lead (PbPb) and proton-proton (pp) collisions is studied in their dimuon decay channel using the CMS detector at the LHC. The $\Upsilon$(3S) meson is observed for the first time in PbPb collisions, with a significance above five standard deviations. The ratios of yields measured in PbPb and pp collisions are reported for both the $\Upsilon$(2S) and $\Upsilon$(3S) mesons, as functions of transverse momentum and PbPb collision centrality. These ratios, when appropriately scaled, are significantly less than unity, indicating a suppression of $\Upsilon$ yields in PbPb collisions. This suppression increases from peripheral to central PbPb collisions. Furthermore, the suppression is stronger for $\Upsilon$(3S) mesons compared to $\Upsilon$(2S) mesons, extending the pattern of sequential suppression of quarkonium states in nuclear collisions previously seen for the $\psi$/J, $\psi$(2S), $\Upsilon$(1S), and $\Upsilon$(2S) mesons.

9 data tables

Measured $R_\text{AA}$ for the $\Upsilon(2S)$ state as functions of PbPb collision centrality, integrated over the full kinematic range $p_\text{T}$ < 30 GeV/c and |y| < 2.4. The global uncertainty "PP MB" represents the pp luminosity and PbPb $N_\text{MB}$ combined uncertainties, whereas the global uncertainty "PP 2S" corresponds to the uncertainty on the $\Upsilon(2S)$ pp yields.

Measured $R_\text{AA}$ for the $\Upsilon(3S)$ state as functions of PbPb collision centrality, integrated over the full kinematic range $p_\text{T}$ < 30 GeV/c and |y| < 2.4. The global uncertainty "PP MB" represents the pp luminosity and PbPb $N_\text{MB}$ combined uncertainties, whereas the global uncertainty "PP 3S" corresponds to the uncertainty on the $\Upsilon(3S)$ pp yields.

Measured $R_\text{AA}$ for the$\Upsilon(2S)$ state in the 0–90% centrality interval, integrated over the full kinematic range $p_\text{T}$ < 30 GeV/c and |y| < 2.4. The global uncertainty "PP MB" represents the pp luminosity and PbPb $N_\text{MB}$ combined uncertainties, whereas the global uncertainty "PP 2S" corresponds to the uncertainty on the $\Upsilon(2S)$ pp yields.

More…

Charged-hadron production in $pp$, $p$+Pb, Pb+Pb, and Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 074, 2023.
Inspire Record 2601282 DOI 10.17182/hepdata.135676

This paper presents measurements of charged-hadron spectra obtained in $pp$, $p$+Pb, and Pb+Pb collisions at $\sqrt{s}$ or $\sqrt{s_{_\text{NN}}}=5.02$ TeV, and in Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5.44$ TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb${}^{-1}$, 28 nb${}^{-1}$, 0.50 nb${}^{-1}$, and 3 $\mu$b${}^{-1}$, respectively. The nuclear modification factors $R_{p\text{Pb}}$ and $R_\text{AA}$ are obtained by comparing the spectra in heavy-ion and $pp$ collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor $R_{p\text{Pb}}$ shows a moderate enhancement above unity with a maximum at $p_{\mathrm{T}} \approx 3$ GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct $p_{\mathrm{T}}$-dependence with a local maximum at $p_{\mathrm{T}} \approx 2$ GeV and a local minimum at $p_{\mathrm{T}} \approx 7$ GeV. This dependence is more distinguishable in more central collisions. No significant $|\eta|$-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe $R_\text{AA}$ better in central collisions and in the $p_{\mathrm{T}}$ range from about 10 to 100 GeV.

140 data tables

- - - - - - - - - - - - - - - - - - - - <br><b>charged-hadron spectra:</b> <br><i>pp reference:</i>&nbsp;&nbsp; <a href="?version=1&table=Table1">for p+Pb</a>&nbsp;&nbsp; <a href="?version=1&table=Table10">for Pb+Pb</a>&nbsp;&nbsp; <a href="?version=1&table=Table19">for Xe+Xe</a>&nbsp;&nbsp; <br><i>p+Pb:</i>&nbsp;&nbsp; <a href="?version=1&table=Table2">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table3">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table4">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table5">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table6">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table7">40-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table8">60-90%</a>&nbsp;&nbsp; <a href="?version=1&table=Table9">0-90%</a>&nbsp;&nbsp; <br><i>Pb+Pb:</i>&nbsp;&nbsp; <a href="?version=1&table=Table11">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table12">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table13">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table14">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table15">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table16">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table17">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table18">60-80%</a>&nbsp;&nbsp; <br><i>Xe+Xe:</i>&nbsp;&nbsp; <a href="?version=1&table=Table20">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table21">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table22">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table23">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table24">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table25">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table26">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table27">60-80%</a>&nbsp;&nbsp; </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (p<sub>T</sub>):</b> <br><i>R<sub>pPb</sub>:</i>&nbsp;&nbsp; <a href="?version=1&table=Table28">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table29">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table30">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table31">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table32">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table33">40-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table34">60-90%</a>&nbsp;&nbsp; <a href="?version=1&table=Table35">0-90%</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Pb+Pb):</i>&nbsp;&nbsp; <a href="?version=1&table=Table36">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table37">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table38">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table39">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table40">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table41">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table42">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table43">60-80%</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Xe+Xe):</i>&nbsp;&nbsp; <a href="?version=1&table=Table44">0-5%</a>&nbsp;&nbsp; <a href="?version=1&table=Table45">5-10%</a>&nbsp;&nbsp; <a href="?version=1&table=Table46">10-20%</a>&nbsp;&nbsp; <a href="?version=1&table=Table47">20-30%</a>&nbsp;&nbsp; <a href="?version=1&table=Table48">30-40%</a>&nbsp;&nbsp; <a href="?version=1&table=Table49">40-50%</a>&nbsp;&nbsp; <a href="?version=1&table=Table50">50-60%</a>&nbsp;&nbsp; <a href="?version=1&table=Table51">60-80%</a>&nbsp;&nbsp; </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (y*/eta):</b> <br><i>R<sub>pPb</sub>:</i> <br>&nbsp;&nbsp;0-5%:&nbsp;&nbsp; <a href="?version=1&table=Table52">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table53">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table54">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table55">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;5-10%:&nbsp;&nbsp; <a href="?version=1&table=Table56">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table57">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table58">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table59">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;10-20%:&nbsp;&nbsp; <a href="?version=1&table=Table60">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table61">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table62">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table63">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;20-30%:&nbsp;&nbsp; <a href="?version=1&table=Table64">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table65">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table66">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table67">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;30-40%:&nbsp;&nbsp; <a href="?version=1&table=Table68">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table69">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table70">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table71">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;40-60%:&nbsp;&nbsp; <a href="?version=1&table=Table72">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table73">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table74">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table75">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;60-90%:&nbsp;&nbsp; <a href="?version=1&table=Table76">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table77">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table78">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table79">15.1-17.3GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;0-90%:&nbsp;&nbsp; <a href="?version=1&table=Table80">0.66-0.755GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table81">2.95-3.35GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table82">7.65-8.8GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table83">15.1-17.3GeV</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Pb+Pb):</i> <br>&nbsp;&nbsp;0-5%:&nbsp;&nbsp; <a href="?version=1&table=Table84">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table85">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table86">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table87">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;5-10%:&nbsp;&nbsp; <a href="?version=1&table=Table88">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table89">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table90">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table91">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;10-20%:&nbsp;&nbsp; <a href="?version=1&table=Table92">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table93">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table94">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table95">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;20-30%:&nbsp;&nbsp; <a href="?version=1&table=Table96">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table97">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table98">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table99">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;30-40%:&nbsp;&nbsp; <a href="?version=1&table=Table100">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table101">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table102">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table103">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;40-50%:&nbsp;&nbsp; <a href="?version=1&table=Table104">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table105">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table106">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table107">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;50-60%:&nbsp;&nbsp; <a href="?version=1&table=Table108">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table109">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table110">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table111">60-95GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;60-80%:&nbsp;&nbsp; <a href="?version=1&table=Table112">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table113">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table114">20-23GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table115">60-95GeV</a>&nbsp;&nbsp; <br><i>R<sub>AA</sub> (Xe+Xe):</i> <br>&nbsp;&nbsp;0-5%:&nbsp;&nbsp; <a href="?version=1&table=Table116">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table117">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table118">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;5-10%:&nbsp;&nbsp; <a href="?version=1&table=Table119">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table120">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table121">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;10-20%:&nbsp;&nbsp; <a href="?version=1&table=Table122">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table123">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table124">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;20-30%:&nbsp;&nbsp; <a href="?version=1&table=Table125">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table126">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table127">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;30-40%:&nbsp;&nbsp; <a href="?version=1&table=Table128">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table129">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table130">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;40-50%:&nbsp;&nbsp; <a href="?version=1&table=Table131">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table132">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table133">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;50-60%:&nbsp;&nbsp; <a href="?version=1&table=Table134">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table135">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table136">20-23GeV</a>&nbsp;&nbsp; <br>&nbsp;&nbsp;60-80%:&nbsp;&nbsp; <a href="?version=1&table=Table137">1.7-1.95GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table138">6.7-7.65GeV</a>&nbsp;&nbsp; <a href="?version=1&table=Table139">20-23GeV</a>&nbsp;&nbsp; <br>- - - - - - - - - - - - - - - - - - - -

Charged-hadron cross-section in pp collisions. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.

Charged-hadron spectrum in the centrality interval 0-5% for p+Pb, divided by &#9001;TPPB&#9002;. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.

More…

Observation of the B$_\mathrm{c}^+$ meson in PbPb and pp collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 128 (2022) 252301, 2022.
Inspire Record 2006858 DOI 10.17182/hepdata.111309

The $B_\mathrm{c}^+$ meson is observed for the first time in heavy ion collisions. Data from the CMS detector are used to study the production of the $B_\mathrm{c}^+$ meson in lead-lead (PbPb) and proton-proton (pp) collisions at a center-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} =$ 5.02 TeV, via the $B_\mathrm{c}^+ \to (J/\psi\to\mu^+\mu^-)\mu^+\nu_\mu$ decay. The $B_\mathrm{c}^+$ nuclear modification factor, derived from the PbPb-to-pp ratio of production cross sections, is measured in two bins of the trimuon transverse momentum and of the PbPb collision centrality. The B$_\mathrm{c}^+$ meson is shown to be less suppressed than quarkonia and most of the open heavy-flavor mesons, suggesting that effects of the hot and dense nuclear matter created in heavy ion collisions contribute to its production. This measurement sets forth a promising new probe of the interplay of suppression and enhancement mechanisms in the production of heavy-flavor mesons in the quark-gluon plasma.

3 data tables

The $B_c$ meson production (pp-equivalent) cross-section times branching fraction of the $B_c\rightarrow (J/\psi \rightarrow \mu\mu) \mu \nu_{\mu}$ decay in pp and PbPb collisions. The used kinematic variables correspond to those of the trimuon final state. The two $p_T$ bins correspond to different rapidity ranges. The total uncertainty is decomposed in an uncertainty from the fit and one representing all other sources. The markers of the $p_T^{\mu\mu\mu}$ bins are placed according to the Lafferty-Wyatt prescription.

The $B_c$ meson nuclear modification factor in PbPb collisions, in $p_T^{\mu\mu\mu}$ bins corresponding to different trimuon rapidity ranges. The total uncertainty is decomposed in a bin-to-bin-uncorrelated uncertainty and one fully correlated along the two bins. The markers of the $p_T^{\mu\mu\mu}$ bins are placed at the average of the Lafferty-Wyatt prescriptions applied to the pp and PbPb spectra.

The $B_c$ meson nuclear modification factor in PbPb collisions, in centrality bins, integrated over the studied kinematic range. The cut on the trimuon rapidity depends on the trimuon $p_T$. The total uncertainty is decomposed in a bin-to-bin-uncorrelated uncertainty and one fully correlated along the two bins. The centrality bin markers are placed at the minimum bias average number of participants $N_{part}$.


Measurement of the nuclear modification factor for muons from charm and bottom hadrons in Pb+Pb collisions at 5.02 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Lett.B 829 (2022) 137077, 2022.
Inspire Record 1914582 DOI 10.17182/hepdata.111123

Heavy-flavour hadron production provides information about the transport properties and microscopic structure of the quark-gluon plasma created in ultra-relativistic heavy-ion collisions. A measurement of the muons from semileptonic decays of charm and bottom hadrons produced in Pb+Pb and $pp$ collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV with the ATLAS detector at the Large Hadron Collider is presented. The Pb+Pb data were collected in 2015 and 2018 with sampled integrated luminosities of $208~\mathrm{\mu b}^{-1}$ and $38~\mathrm{\mu b^{-1}}$, respectively, and $pp$ data with a sampled integrated luminosity of $1.17~\mathrm{pb}^{-1}$ were collected in 2017. Muons from heavy-flavour semileptonic decays are separated from the light-flavour hadronic background using the momentum imbalance between the inner detector and muon spectrometer measurements, and muons originating from charm and bottom decays are further separated via the muon track's transverse impact parameter. Differential yields in Pb+Pb collisions and differential cross sections in $pp$ collisions for such muons are measured as a function of muon transverse momentum from 4 GeV to 30 GeV in the absolute pseudorapidity interval $|\eta| < 2$. Nuclear modification factors for charm and bottom muons are presented as a function of muon transverse momentum in intervals of Pb+Pb collision centrality. The measured nuclear modification factors quantify a significant suppression of the yields of muons from decays of charm and bottom hadrons, with stronger effects for muons from charm hadron decays.

6 data tables

Summary of charm muon double differential cross section in pp collisions at 5.02 TeV as a function of pT. Uncertainties are statistical and systematic, respectively.

Summary of charm muon per-event invariant yields in Pb+Pb collisions at 5.02 TeV as a function of pT for five different centrality intervals. Uncertainties are statistical and systematic, respectively.

Summary of bottom muon per-event invariant yields in Pb+Pb collisions at 5.02 TeV as a function of pT for five different centrality intervals. Uncertainties are statistical and systematic, respectively.

More…

Enhanced strange baryon production in Au+Au collisions compared to p+p at sqrts = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 77 (2008) 044908, 2008.
Inspire Record 750816 DOI 10.17182/hepdata.105866

We report on the observed differences in production rates of strange and multi-strange baryons in Au+Au collisions at sqrts = 200 GeV compared to pp interactions at the same energy. The strange baryon yields in Au+Au collisions, then scaled down by the number of participating nucleons, are enhanced relative to those measured in pp reactions. The enhancement observed increases with the strangeness content of the baryon, and increases for all strange baryons with collision centrality. The enhancement is qualitatively similar to that observed at lower collision energy sqrts =17.3 GeV. The previous observations are for the bulk production, while at intermediate pT, 1 < pT< 4 GeV/c, the strange baryons even exceed binary scaling from pp yields.

18 data tables

Midrapidity E(i) as a function of $<N_{part}>$ for $\Lambda$, $\bar{\Lambda}$ ($|y| < 1.0$), $\Xi^{-}$, $\bar{\Xi}^{+}$ ($|y| < 0.75$). Error bars on the data points represent those from the heavy ions. Stat. and syst. errors added in quadrature. Grand Canonical Model arrows(values in brackets), for $\Lambda$ E(2.6) and T(165 MeV) for $\bar{\Lambda}$ E(2.2) and T(170 MeV), for $\Xi$ E(10.7) and T(165 MeV), for anti-$\Xi$ E(7.5) and T(170 MeV).

Midrapidity E(i) as a function of $<N_{part}>$ for $\Omega^{-}+\bar{\Omega}^{+}$ ($|y| < 0.75$). Error bars on the data points represent those from the heavy ions. Stat. and syst. errors added in quadrature.

Midrapidity E(i) as a function of $<N_{part}>$ for inclusive $p$ ($|y| < 0.5$). Error bars on the data points represent those from the heavy ions. Stat. and syst. errors added in quadrature.

More…

Version 2
Erratum: Transverse momentum and centrality dependence of high-\pt\ non-photonic electron suppression in Au+Au collisions at \sqrtsNN\ = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 98 (2007) 192301, 2007.
Inspire Record 721275 DOI 10.17182/hepdata.41842

The STAR collaboration at RHIC reports measurements of the inclusive yield of non-photonic electrons, which arise dominantly from semi-leptonic decays of heavy flavor mesons, over a broad range of transverse momenta ($1.2 < \pt < 10$ \gevc) in \pp, \dAu, and \AuAu collisions at \sqrtsNN = 200 GeV. The non-photonic electron yield exhibits unexpectedly large suppression in central \AuAu collisions at high \pt, suggesting substantial heavy quark energy loss at RHIC. The centrality and \pt dependences of the suppression provide constraints on theoretical models of suppression.

14 data tables

Non photonic electron yield in P+P collisions versus PT To obtain a differential cross-section in mb/(GeV2), multiply listed data by 30 Note that, in addition to the statistical and systematical errors, there is a normalization error on the value, given in the second column.

Non photonic electron yield in P+P collisions versus $p_{T}$. To obtain a differential cross-section in mb/(GeV$^2$), multiply listed data by 30.

Non photonic electron yield in minimum bias D+AU collisions versus PT To obtain a differential cross-section in mb/(GeV2), multiply listed data by 30 Note that, in addition to the statistical and systematical errors, there is a normalization error on the value, given in the second column.

More…