Measurement of the forward - backward asymmetry in Z ---> b anti-b and Z ---> c anti-c

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 263 (1991) 325-336, 1991.
Inspire Record 316148 DOI 10.17182/hepdata.29386

From a sample of 150 000 hadronic Z decays collected with the ALEPH detector at LEP, events containing prompt leptons are used to measure the forward-backward asymmetries for the channels Z → b b and Z → c c , giving the results A FB b =0.126±0.028±0.012 and A FB c =0.064±0.039±0.030. These asymmetries correspond to the value of effective electroweak mixing angle at the Z mass sin 2 θ W ( m Z 2 ) = 0.2262±0.0053.

4 data tables

b asymmetry from high pt leptons.

b asymmetry from full pt range.

b asymmetry from full pt range.

More…

Measurement of charge asymmetry in hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 259 (1991) 377-388, 1991.
Inspire Record 314476 DOI 10.17182/hepdata.29453

A significant charge asymmetry is observed in the hadronic Z decays with the ALEPH detector at LEP. The asymmetry expressed in terms of the difference in momentum weighted charges in the two event hemispheres is measured to be < Q forward >−< Q backward >= −0.0084±0.0015 (stat.) ±0.0004 (exp. sys.). In the framework of the standard model this can be interpreted as a measurement of the effective electroweak mixing angle, sin 2 O w ( M z 2 =0.2300±0.0034 (stat.) ±0.0010 (exp. sys.) ±0.0038 (theor. sys.) or of the ratio of the vector to axual- vector coupling costants of the electron, g ve g Ae =+0.073±0.024.

2 data tables

No description provided.

No description provided.


Measurement of alpha-s from the structure of particle clusters produced in hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 257 (1991) 479-491, 1991.
Inspire Record 302771 DOI 10.17182/hepdata.29466

Using 106 000 hadronic events obtained with the ALEPH detector at LEP at energies close to the Z resonance peak, the strong coupling constant α s is measured by an analysis of energy-energy correlations (EEC) and the global event shape variables thrust, C -parameter and oblateness. It is shown that the theoretical uncertainties can be significantly reduced if the final state particles are first combined in clusters using a minimum scaled invariant mass cut, Y cut , before these variables are computed. The combined result from all shape variables of pre-clustered events is α s ( M Z 2 = 0.117±0.005 for a renormalization scale μ= 1 2 M Z . For μ values between M Z and the b-quark mass, the result changes by −0.009 +0.006 .

2 data tables

No description provided.

Error contains both experimental and theoretical errors.


Measurement of the strong coupling constant alpha-s from global event shape variables of hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 255 (1991) 623-633, 1991.
Inspire Record 301661 DOI 10.17182/hepdata.29491

An analysis of global event-shape variables has been carried out for the reaction e + e − →Z 0 →hadrons to measure the strong coupling constant α s . This study is based on 52 720 hadronic events obtained in 1989/90 with the ALEPH detector at the LEP collider at energies near the peak of the Z-resonance. In order to determine α s , second order QCD predictions modified by effects of perturbative higher orders and hadronization were fitted to the experimental distributions of event-shape variables. From a detailed analysis of the theoretical uncertainties we find that this approach is best justified for the differential two-jet rate, from which we obtain α s ( M Z 2 ) = 0.121 ± 0.002(stat.)±0.003(sys.)±0.007(theor.) using a renormalization scale ω = 1 2 M Z . The dependence of α s ( M Z 2 ) on ω is parameterized. For scales m b <ω< M Z the result varies by −0.012 +0.007 .

1 data table

The second DSYS error is the theoretical error.


Measurement of electroweak parameters from Z decays into Fermion pairs

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Z.Phys.C 48 (1990) 365-392, 1990.
Inspire Record 298414 DOI 10.17182/hepdata.47314

We report on the properties of theZ resonance from 62 500Z decays into fermion pairs collected with the ALEPH detector at LEP, the Large Electron-Positron storage ring at CERN. We findMZ=(91.193±0.016exp±0.030LEP) GeV, ΓZ=(2497±31) MeV, σhad0=(41.86±0.66)nb, and for the partial widths Γinv=(489±24) MeV, Γhad(1754±27) MeV, Γee=(85.0±1.6)MeV, Γμμ=(80.0±2.5) MeV, and Γττ=(81.3±2.5) MeV, all in good agreement with the Standard Model. Assuming lepton universality and using a lepton sample without distinction of the final state we measure Γu=(84.3±1.3) MeV. The forward-backward asymmetry in leptonic decays is used to determine the vector and axial-vector weak coupling constants of leptors,gv2(MZ2)=(0.12±0.12)×10−2 andgA2(MZ2)=0.2528±0.0040. The number of light neutrino species isNν=2.91±0.13; the electroweak mixing angle is sin2θW(MZ2)=0.2291±0.0040.

8 data tables

Hadronic cross section from the charged track selection trigger.

Hadronic cross section from the calorimeter selection trigger.

Averaged hadronic cross section.

More…

A Precise Determination of the Number of Families With Light Neutrinos and of the $Z$ Boson Partial Widths

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Lees, J.P. ; et al.
Phys.Lett.B 235 (1990) 399-411, 1990.
Inspire Record 284411 DOI 10.17182/hepdata.29743

More extensive and precise results are reported on the parameters of Z decay. On the basis of 20 000 Z decays collected with the ALEPH detector at LEP we find M z =91.182±0.026 (exp.) ±0.030 (beam) GeV, Γ z =2.541±0.056 GeV and σ had 0 =41.4±0.8 nb. The partial widths for the hadronic and leptonic channels are Γ had =1804±44 MeV, Γ e + e − =82.1±3.4 MeV, Γ μ + μ − =87.9±6.0 MeV and Γ τ + τ − =86.1±5.6 MeV, in good agreement with the standard model. On the basis of the average leptonic width Γ ℓ + ℓ − =83.9±2.2 MeV, the effective weak mixing angle is found to be sin 2 θ w ( M z )=0.231±0.008. Usin g the partial widths calculated in the standard model, the number of light neutrino families is N ν =3.01±0.15 (exp.)±0.05 (theor.).

4 data tables

Penetrating charged particle track selection.

Calorimeter selection.

Average cross section.

More…

Properties of Hadronic Events in e$^{+} $e$^{-}$ Annihilation at $S^{(1/2)}=91$-{GeV}

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Lees, J.P. ; et al.
Phys.Lett.B 234 (1990) 209-218, 1990.
Inspire Record 283354 DOI 10.17182/hepdata.29739

We report on properties of hadronic events from e + e − annihilation observed by the ALEPH detector at the large Electron Positron Collider at CERN. The center-of-mass energy was s =91.0−91.3 GeV . Measured distributions of the global event-shape variables sphericity, aplanarity, thrust and minor value, and of the inclusive variables x p , p ⊥ in , p ⊥ out and y are presented. We measure a mean charged multiplicity in hadronic events of 〈 N ch 〉=21.3±0.1 (statistical)±0.6 (systematic). The data are in good agreement with QCD-based models which use the leading-logarithm approximation, and are less well described by a model using O( α s 2 ) QCD.

1 data table

NO RAD. CORR APPLIED.


Determination of the Number of Light Neutrino Species

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Lees, J.P. ; et al.
Phys.Lett.B 231 (1989) 519-529, 1989.
Inspire Record 282904 DOI 10.17182/hepdata.29758

The cross-section for e + e − → hadrons in the vicinity of the Z boson peak has been measured with the ALEPH detector at the CERN Large Electron Positron collider, LEP. Measurements of the Z mass, M z = (91.174±0.070) GeV, the Z width Γ z =(2.68±0.15) GeV, and of the peak hadronic cross-section, σ had peak =(29.3±1.2) nb, are presented. With the constraints of the standard electroweak model, the number of light neutrino species is found to be N v =3.27±0.30. this results rules out of the possibility of a fourth type of light neutrino at 98% CL.

2 data tables

Selection from TPC tracks.

Selection by calorimeters.


THE pi, K, PROTON ELECTROMAGNETIC FORM-FACTORS AND NEW RELATED DM2 RESULTS

The DM2 collaboration Castro, A. ; Bisello, D. ; Busetto, G. ; et al.
LAL-88-58, 1988.
Inspire Record 267117 DOI 10.17182/hepdata.38181

None

1 data table

No description provided.


The Pion Electromagnetic Form-factor in the Timelike Energy Range 1.35-{GeV} $\le \sqrt{s} \le$ 2.4-{GeV}

The DM2 collaboration Bisello, D. ; Busetto, G. ; Castro, A. ; et al.
Phys.Lett.B 220 (1989) 321-327, 1989.
Inspire Record 267118 DOI 10.17182/hepdata.29829

The e + e − → π + π − cross section has been measured from about 280 events (an order of magnitude more than the previous world statistics) in the energy interval 1.35 ⩽ s ⩽ 2.4 GeV with the DM2 detector at DCI. The pion squared form factor | F π | 2 shows a deep minimum around 1.6 GeV/ c 2 and is better fit under the hypothesis of two ϱ-like resonance ⋍0.25 GeV/ c 2 wide with 1.42 and 1.77 GeV/ c 2 masses.

1 data table

Statistical errors only.