We present a measurement of the differential cross section as a function of transverse momentum of the Z boson in ppbar collisions at sqrt{s}=1.8 TeV using data collected by the D0 experiment at the Fermilab Tevatron Collider during 1994--1996. We find good agreement between our data and the NNLO resummation prediction and extract values of the non-perturbative parameters for the resummed prediction from a fit to the differential cross section.
Differential cross section in the electron channel. The errors contain both statistical and systematic error excluding the overall normalization error.
We report on measurements of inclusive cross sections times branching fractions into electrons for W and Z bosons produced in ppbar collisions at sqrts=1.8 TeV.From an integrated luminosity of 84.5 inverse pb recorded in 1994--1995 using the D0 detector at the Fermilab Tevatron, we determine sigma(ppbar->W+X)B(W->e nu) = 2310 +- 10(stat) +- 50(syst) +- 100(lum) pb and sigma(ppbar->Z+X)B(Z->e e) = 221 +- 3(stat) +- 4(syst) +- 10(lum) pb. From these, we derive their Ratio R = 10.43 +- 0.15(stat) +- 0.20(syst) +- 0.10(NLO), B(W->e nu) = 0.1066 +- 0.0015(stat) +- 0.0021(syst) +- 0.0011(theory)+- 0.0011(NLO), and Gamma_W = 2.130 +- 0.030(stat) +- 0.041(syst) +- 0.022(theory) +- 0.021(NLO) GeV. We use the latter to set a 95% confidence level upper limit on the partial decay width of the W boson into non-standard model final states, Gamma_W^{inv}, of 0.168 GeV. Combining these results with those from the 1992--1993 data gives R = 10.54 +- 0.24, Gamma_W = 2.107 +- 0.054 GeV, and a 95% C.L. upper limit on Gamma_W^{inv} of 0.132 GeV. Using a sample with a luminosity of 505 inverse nb taken at sqrts=630 GeV, we measure sigma(ppbar->W+X)B(W->e nu) = 658 +- 67 pb.
Cross sections times branching ratios for W+- and Z0 production. The second DSYS error is due to the uncertainty in the luminosity.
Ratio of W to Z0 cross sections. The second systematic error is due to the uncertainty in the NLO electroweak radiative corrections.
We present measurements of the b-bbar production cross section and angular correlations using the D0 detector at the Fermilab Tevatron p-pbar Collider operating at sqrt(s) = 1.8 TeV. The b quark production cross section for |y(b)|<1.0 and p_T(b)>6 GeV/c is extracted from single muon and dimuon data samples. The results agree in shape with the next-to-leading order QCD calculation of heavy flavor production but are greater than the central values of these predictions. The angular correlations between b and bbar quarks, measured from the azimuthal opening angle between their decay muons, also agree in shape with the next-to-leading order QCD prediction.
No description provided.
The errors are combinations of statistical and systematic uncertainties.
The distribution of MU+ MU- azimuthal angle difference.
Evidence of anomalous WW and WZ production was sought in pbar{p} collisions at a center-of-mass energy of sqrt(s) = 1.8 TeV. The final states $WW (WZ) to mu-nu-jet-jet + X, WZ to mu-nu-e-e + X and WZ to e-nu-e-e + X were studied using a data sample corresponding to an integrated luminosity of approximately 90 pb-1. No evidence of anomalous diboson production was found. Limits were set on anomalous WWgamma and WWZ couplings and were combined with our previous results. The combined 95% confidence level anomalous coupling limits for Lambda=2 TeV are -0.25 LE Delta-kappa LE 0.39 (lambda=0) and -0.18 LE lambda LE 0.19 (Delta \kappa = 0), assuming the WWgamma couplings are equal to the WWZ couplings.
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONST(NAME=SCALE)**2)**n. KAPPA_GZ means KAPPA_GAMMA = KAPPA_Z. LAMBDA_GZ means LAMBDA_GAMMA = LAMBDA_Z.
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONST(NAME=SCALE)**2)**n.
We report on a search for bottom squarks produced in pbarp collisions at sqrt(s) = 1.8 TeV using the D0 detector at Fermilab. Bottom squarks are assumed to be produced in pairs and to decay to the lightest supersymmetric particle (LSP) and a b quark with branching fraction of 100%. The LSP is assumed to be the lightest neutralino and stable. We set limits on the production cross section as a function of bottom squark mass and LSP mass.
It is assumed that the S-BQ decays intp BQ and LSP with a branching fraction of 100%.
Differential and double differential cross sections of positive pion production by 240 MeV protons on carbon and copper nuclei are measured. The energy dependence of differential cross section for copper nucleus at 90 deg angle within the 240-500 MeV energy range of protons and angular dependence of the integrated differential cross section are obtained. It is shown that the differential cross section at 250 MeV is 80 times less than that at 585 MeV
No description provided.
No description provided.
No description provided.
None
No description provided.
None
No description provided.
We report results from a measurement of the inclusive processes pp→Xp and pd→Xd in the range 5<Mx2s<0.1, 0.01≲|t|≲0.1 (GeV/c)2, and incident proton momenta of 65, 154, and 372 GeV/c. Both pp and pd data show an exponential t dependence and a dominant 1Mx2 behavior for Mx2s≲0.05. By comparing pp and pd data we test factorization and, using the Glauber model, we measure the XN total cross section, σXN=43±10 mb.
No description provided.
No description provided.
No description provided.
Proton-deuteron elastic scattering has been measured in the four-momentum transfer squared region 0.013<|t|<0.14 (GeV/c)2 and for incident proton beam momenta from 50 to 400 GeV/c. The data can be fitted with the Bethe interference formula. We observe shrinkage of the diffraction cone with increasing energy equal to (0.94±0.04)ln(s1 GeV2) (GeV/c)−2. This shrinkage is greater than that observed in pp elastic scattering. The ratio of the elastic to the total cross section is approximately 0.1 and independent of energy above ∼ 150 GeV. In order to extract information on pn scattering we fit our data using the Glauber approach and a form factor which is the sum of exponentials. The values we obtain for the slope parameter in pn scattering are sensitive to the details of the inelastic double-scattering term.
.
.
.