Differential Photoproduction Cross Sections of the $\Sigma^0(1385)$, $\Lambda(1405)$, and $\Lambda(1520)$

The CLAS collaboration Moriya, K. ; Schumacher, R.A. ; Adhikari, K.P. ; et al.
Phys.Rev.C 88 (2013) 045201, 2013.
Inspire Record 1236062 DOI 10.17182/hepdata.61410

We report the exclusive photoproduction cross sections for the Sigma(1385), Lambda(1405), and Lambda(1520) in the reactions gamma + p -> K+ + Y* using the CLAS detector for energies from near the respective production thresholds up to a center-of-mass energy W of 2.85 GeV. The differential cross sections are integrated to give the total exclusive cross sections for each hyperon. Comparisons are made to current theoretical models based on the effective Lagrangian approach and fitted to previous data. The accuracy of these models is seen to vary widely. The cross sections for the Lambda(1405) region are strikingly different for the Sigma+pi-, Sigma0 pi0, and Sigma- pi+ decay channels, indicating the effect of isospin interference, especially at W values close to the threshold.

10 data tables
More…

Measurement of the Sigma pi photoproduction line shapes near the Lambda(1405)

The CLAS collaboration Moriya, K. ; Schumacher, R.A. ; Adhikari, K.P. ; et al.
Phys.Rev.C 87 (2013) 035206, 2013.
Inspire Record 1215598 DOI 10.17182/hepdata.61398

The reaction gamma + p -> K+ + Sigma + pi was used to determine the invariant mass distributions or "line shapes" of the Sigma+ pi-, Sigma- pi+ and Sigma0 pi0 final states, from threshold at 1328 MeV/c^2 through the mass range of the Lambda(1405) and the Lambda(1520). The measurements were made with the CLAS system at Jefferson Lab using tagged real photons, for center-of-mass energies 1.95 < W < 2.85 GeV. The three mass distributions differ strongly in the vicinity of the I=0 \Lambda(1405), indicating the presence of substantial I=1 strength in the reaction. Background contributions to the data from the Sigma0(1385) and from K^* Sigma production were studied and shown to have negligible influence. To separate the isospin amplitudes, Breit-Wigner model fits were made that included channel-coupling distortions due to the NKbar threshold. A best fit to all the data was obtained after including a phenomenological I=1, J^P = 1/2^- amplitude with a centroid at 1394\pm20 MeV/c^2 and a second I=1 amplitude at 1413\pm10 MeV/c^2. The centroid of the I=0 Lambda(1405) strength was found at the Sigma pi threshold, with the observed shape determined largely by channel-coupling, leading to an apparent overall peak near 1405 MeV/c^2.

9 data tables

Invariant mass distributions of the three SIGMA-PI combinations for centre-of-mass energies, W, from 1.95 to 2.05 GeV corresponding to incident photon energies from 1.56 to 1.77 GeV.

Invariant mass distributions of the three SIGMA-PI combinations for centre-of-mass energies, W, from 2.05 to 2.15 GeV corresponding to incident photon energies from 1.77 to 1.99 GeV.

Invariant mass distributions of the three SIGMA-PI combinations for centre-of-mass energies, W, from 2.15 to 2.25 GeV corresponding to incident photon energies from 1.99 to 2.23 GeV.

More…

Differential cross sections and recoil polarizations for the reaction gamma p -> K+ Sigma0

The CLAS collaboration Dey, B. ; Meyer, C.A. ; Bellis, M. ; et al.
Phys.Rev.C 82 (2010) 025202, 2010.
Inspire Record 857728 DOI 10.17182/hepdata.55696

High-statistics measurements of differential cross sections and recoil polarizations for the reaction $\gamma p \rightarrow K^+ \Sigma^0$ have been obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass energies ($\sqrt{s}$) from 1.69 to 2.84 GeV, with an extensive coverage in the $K^+$ production angle. Independent measurements were made using the $K^{+}p\pi^{-}$($\gamma$) and $K^{+}p$($\pi^-, \gamma$) final-state topologies, and were found to exhibit good agreement. Our differential cross sections show good agreement with earlier CLAS, SAPHIR and LEPS results, while offering better statistical precision and a 300-MeV increase in $\sqrt{s}$ coverage. Above $\sqrt{s} \approx 2.5$ GeV, $t$- and $u$-channel Regge scaling behavior can be seen at forward- and backward-angles, respectively. Our recoil polarization ($P_\Sigma$) measurements represent a substantial increase in kinematic coverage and enhanced precision over previous world data. At forward angles we find that $P_\Sigma$ is of the same magnitude but opposite sign as $P_\Lambda$, in agreement with the static SU(6) quark model prediction of $P_\Sigma \approx -P_\Lambda$. This expectation is violated in some mid- and backward-angle kinematic regimes, where $P_\Sigma$ and $P_\Lambda$ are of similar magnitudes but also have the same signs. In conjunction with several other meson photoproduction results recently published by CLAS, the present data will help constrain the partial wave analyses being performed to search for missing baryon resonances.

149 data tables

Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.69 to 1.7 GeV.

Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.7 to 1.71 GeV.

Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.71 to 1.72 GeV.

More…

Differential cross sections for the reactions gamma p-> p eta and gamma p -> p eta-prime

The CLAS collaboration Williams, M. ; Krahn, Z. ; Applegate, D. ; et al.
Phys.Rev.C 80 (2009) 045213, 2009.
Inspire Record 830257 DOI 10.17182/hepdata.52983

High-statistics differential cross sections for the reactions gamma p -> p eta and gamma p -> p eta-prime have been measured using the CLAS at Jefferson Lab for center-of-mass energies from near threshold up to 2.84 GeV. The eta-prime results are the most precise to date and provide the largest energy and angular coverage. The eta measurements extend the energy range of the world's large-angle results by approximately 300 MeV. These new data, in particular the eta-prime measurements, are likely to help constrain the analyses being performed to search for new baryon resonance states.

51 data tables

Differential cross section for the W range 1.68 to 1.69 GeV.

Differential cross section for the W range 1.69 to 1.70 GeV.

Differential cross section for the W range 1.70 to 1.71 GeV.

More…

Differential cross sections and spin density matrix elements for the reaction $\gamma p \to p \omega$

The CLAS collaboration Williams, M. ; Applegate, D. ; Bellis, M. ; et al.
Phys.Rev.C 80 (2009) 065208, 2009.
Inspire Record 829180 DOI 10.17182/hepdata.52667

High-statistics differential cross sections and spin density matrix elements for the reaction $\gamma p \to p \omega$ have been measured using the CLAS at Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide CM energy bins, each subdivided into $\cos{\theta_{CM}^{\omega}}$ bins of width 0.1. These are the most precise and extensive $\omega$ photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements.

221 data tables

Differential cross section for the W range 1.72 to 1.73 GeV.

Differential cross section for the W range 1.73 to 1.74 GeV.

Differential cross section for the W range 1.74 to 1.75 GeV.

More…

Photoproduction of $\pi^+ \pi^-$ meson pairs on the proton

The CLAS collaboration Battaglieri, M. ; De Vita, R. ; Szczepaniak, A.P. ; et al.
Phys.Rev.D 80 (2009) 072005, 2009.
Inspire Record 825040 DOI 10.17182/hepdata.74824

The exclusive reaction $\gamma p \to p \pi^+ \pi^-$ was studied in the photon energy range 3.0 - 3.8 GeV and momentum transfer range $0.4<-t<1.0$ GeV$^2$. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. In this kinematic range the integrated luminosity was about 20 pb$^{-1}$. The reaction was isolated by detecting the $\pi^+$ and proton in CLAS, and reconstructing the $\pi^-$ via the missing-mass technique. Moments of the di-pion decay angular distributions were derived from the experimental data. Differential cross sections for the $S$, $P$, and $D$-waves in the $M_{\pi^+\pi^-}$ mass range $0.4-1.4$ GeV were derived performing a partial wave expansion of the extracted moments. Besides the dominant contribution of the $\rho(770)$ meson in the $P$-wave, evidence for the $f_0(980)$ and the $f_2(1270)$ mesons was found in the $S$ and $D$-waves, respectively. The differential production cross sections $d\sigma/dt$ for individual waves in the mass range of the above-mentioned mesons were extracted. This is the first time the $f_0(980)$ has been measured in a photoproduction experiment.

198 data tables

Moments YLM(LM=00) of the di-pion angular distribution for -T.

Moments YLM(LM=00) of the di-pion angular distribution for -T.

Moments YLM(LM=00) of the di-pion angular distribution for -T.

More…

Single pi+ electroproduction on the proton in the first and second resonance regions at 0.25-GeV**2 < Q**2 < 0.65-GeV**2 using CLAS.

The CLAS collaboration Egiyan, H. ; Aznauryan, I.G. ; Burkert, V.D. ; et al.
Phys.Rev.C 73 (2006) 025204, 2006.
Inspire Record 707883 DOI 10.17182/hepdata.6748

The ep -> e'pi^+n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV^2 < Q^2 < 0.65 GeV^2 range using the CLAS detector at Thomas Jefferson National Accelerator Facility. For the first time the absolute cross sections were measured covering nearly the full angular range in the hadronic center-of-mass frame. The structure functions sigma_TL, sigma_TT and the linear combination sigma_T+epsilon*sigma_L were extracted by fitting the phi-dependence of the measured cross sections, and were compared to the MAID and Sato-Lee models.

345 data tables

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.11 GeV.

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.13 GeV.

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.15 GeV.

More…

Exclusive rho0 meson electroproduction from hydrogen at CLAS.

The CLAS collaboration Hadjidakis, C. ; Guidal, M. ; Garcon, M. ; et al.
Phys.Lett.B 605 (2005) 256-264, 2005.
Inspire Record 655683 DOI 10.17182/hepdata.41881

The longitudinal and transverse components of the cross section for the $e p\to e^\prime p \rho^0$ reaction were measured in Hall B at Jefferson Laboratory using the CLAS detector. The data were taken with a 4.247 GeV electron beam and were analyzed in a range of $x_B$ from 0.2 to 0.6 and of $Q^2$ from 1.5 to 3.0 GeV$^2$. The data are compared to a Regge model based on effective hadronic degrees of freedom and to a calculation based on Generalized Parton Distributions. It is found that the transverse part of the cross section is well described by the former approach while the longitudinal part can be reproduced by the latter.

5 data tables

The ratio of the longitudinal to transverse cross sections for two Q**2 regions.

The longitudinal and transverse cross sections as a function of Q**2 for X Bjorken = 0.31.

The longitudinal and transverse cross sections as a function of Q**2 for X Bjorken = 0.38.

More…

Complete angular distribution measurements of two-body deuteron photodisintegration between 0.5-GeV and 3-GeV.

The CLAS collaboration Mirazita, M. ; Ronchetti, F. ; Rossi, P. ; et al.
Phys.Rev.C 70 (2004) 014005, 2004.
Inspire Record 650821 DOI 10.17182/hepdata.31633

Nearly complete angular distributions of the two-body deuteron photodisintegration differential cross section have been measured using the CLAS detector and the tagged photon beam at JLab. The data cover photon energies between 0.5 and 3.0 GeV and center-of-mass proton scattering angles 10-160 degrees. The data show a persistent forward-backward angle asymmetry over the explored energy range, and are well-described by the non-perturbative Quark Gluon String Model.

4 data tables

Angular distributions of the photodisintegration cross section for angle between 10 and 50 degrees in the CM.

Angular distributions of the photodisintegration cross section for angle between 50 and 90 degrees in the CM.

Angular distributions of the photodisintegration cross section for angle between 90 and 130 degrees in the CM.

More…

Measurement of the proton spin structure function g1(x,Q**2) for Q**2 from 0.15-GeV**2 to 1.6-GeV**2 with CLAS.

The CLAS collaboration Fatemi, R. ; Skabelin, A.V. ; Burkert, V.D. ; et al.
Phys.Rev.Lett. 91 (2003) 222002, 2003.
Inspire Record 621221 DOI 10.17182/hepdata.41917

Double-polarization asymmetries for inclusive $ep$ scattering were measured at Jefferson Lab using 2.6 and 4.3 GeV longitudinally polarized electrons incident on a longitudinally polarized NH$_3$ target in the CLAS detector. The polarized structure function $g_1(x,Q^2)$ was extracted throughout the nucleon resonance region and into the deep inelastic regime, for $Q^2 = 0.15 -1.64 $GeV$^2$. The contributions to the first moment $\Gamma_1(Q^2) = \int g_1(x,Q^2)dx$ were determined up to $Q^2=1.2$ GeV$^2$. Using a parametrization for $g_1$ in the unmeasured low $x$ regions, the complete first moment was estimated over this $Q^2$ region. A rapid change in $\Gamma_1$ is observed for $Q^2 < 1 $GeV$^2$, with a sign change near $Q^2 = 0.3 $GeV$^2$, indicating dominant contributions from the resonance region. At $Q^2=1.2$ GeV$^2$ our data are below the pQCD evolved scaling value.

8 data tables

The measured photon asymmetry (A1+ETA*A2) for the Q**2 region 0.15 to 0.22 GeV**2 obtained with a beam energy of 2.6 GeV.

The measured photon asymmetry (A1+ETA*A2) for the Q**2 region 0.6 to 1.10 GeV**2 obtained with a beam energy of 4.3 GeV.

The polarized structure function G1 as a function of Bjorken X for the Q**2range 0.15 to 0.27 GeV.

More…