The pion form factor is measured in the reaction e + e − → π + π − for center of mass energies in the range 480–1100 MeV. Our results are first analysed in terms of the conventional Vector Meson Dominance formalism, and then taking into account the ωπ inelastic channel. The result of this later formalism is a pion form factor ( F π ) which fits quite well all the existing data on F π both in the timelike and spacelike regions, and pion mean square radius of 〈 r π 2 〉 = 0.460 ± 0.011 fm 2 or 〈r π 2 〉 1 2 = 0.678 ± 0.008 fm .
No description provided.
Results on the protron structure function, F2, are presented for 0.3<q2<80.0 GeV2 and 10<ν<200 GeV. The results support the conclusions of earlier work at 97 and 147 GeV that scaling is violated. A new value for R=σSσT=0.44±0.25 has been obtained using all the Fermilab proton measurements.
No description provided.
The properties of the final-state hadronic system in antineutrino-proton charged-current interactions are presented. The events were observed in the Fermilab 15-foot hydrogen bubble chamber. The average energy of the events is ∼30 GeV, but there are some interactions beyond 100 GeV. The mean multiplicity of the charged hadrons varies as 〈nCH〉=(0.06±0.06)+(1.22±0.03)lnW2 for hadronic masses W in the range 1.0<W2<50 GeV2. By contrast, the multiplicity depends only weakly on the four-momentum transfer between the leptons. The mean pion multiplicities for events with three or more charged tracks are found to be 〈n−〉=1.64±0.04, 〈n0〉=1.16±0.13, for π− and π0 production, respectively. By comparing the number of positive tracks with π− data from neutrino production, we deduce a mean proton multiplicity 〈np〉 of 0.53 ± 0.15. The single-particle distributions in both longitudinal and transverse momentum are found to be similar to those for nondiffractive production in hadronic collisions. The fragmentation properties of the final-state d quarks are compared to the expectations of the quark-parton model. The fraction of observed neutral-strange-particle production for events with three or more charged tracks is 0.08 ± 0.015 and is consistent with coming completely from associated production.
No description provided.
No description provided.
No description provided.
We present the fractional energy distributions for positive and negative hadrons produced in muon-proton and muon-neutron scattering, and ensuing charge ratios for the photon fragmentation region. Data presented for a center-of-mass energy range 2.8<W<4.5 GeV and a virtual-photon mass-squared range 0.5≤Q2≤4.5 GeV2 indicate an overall equality of summed structure functions for neutron and proton targets, which exhibit approximate independence of Q2 and ω′, Implications in terms of quark-fragmentation ideas are discussed.
No description provided.
No description provided.
No description provided.
This paper reports measurements of the inclusive pion electroproduction reaction e+N→e+π±+ anything with both proton and neutron targets for pions produced along and near the direction of the virtual photon. Two independent purposes of these measurements were to provide data at low ε and at high Q2. Data are reported for the (W,Q2,ε) points (2.2 GeV, 1.2 GeV2, 0.45), (2.7, 2.0, 0.35), (2.7, 3.3, 0.40), (2.7, 6.2, 0.40), and (2.7, 9.5, 0.40). The data are used to test Feynman scaling and to compare the ratio of the cross sections for charged-pion production to the quark-model predictions. The data are also used in conjunction with the data from earlier experiments to separate the scalar and transverse components of the cross section.
No description provided.
No description provided.
No description provided.
We have measured the production cross section for K s 0 in e + e − annihilation from 3.6 to 5.0 GeV center of mass energy. A substantial increase of the K s 0 yield is observed around 4 GeV in qualitative agreement with the charm hypothesis.
THE DATA GIVEN HERE AT 9.3 GEV AND ABOVE ARE REPORTED IN C. BERGER ET AL., PL 104B, 79 (1981). THE 12.0 AND 30 GEV DATA WERE TAKEN AT PETRA.
No description provided.
No description provided.
We report measurements of the inclusive electroproduction reaction e+p→e+p+X for protons produced between 100° and 150° in the virtual-photon-target-proton center-of-mass system. Data were taken at the (W,Q2) points (2.2 GeV, 1.2 GeV2), (2.2, 3.6), (2.65, 1.2), (2.65, 2.0), (2.65, 2.8), (2.65, 3.6), (3.1, 1.2), and (3.1, 2.0). The invariant structure function is studied as a function of W, Q2, xT, pT2, and MX2.
No description provided.
No description provided.
No description provided.
We present inclusive distributions for final-state hadrons produced in inelastic muon-proton scattering. Over the total energy range 2<W<4.7 GeV and the momentum-transfer range 0.3<Q2<4.5 GeV2, the fractional momentum and energy distributions approximately scale. Distributions in transverse momentum display an interesting two-component behavior. They show no dependence on the virtual-photon "mass squared" Q2, and have average values typical of other hadron-initiated reactions. A comparison of our distributions with those seen in e+e− annihilation and neutrino-nucleon scattering shows agreement, in support of quark-parton fragmentation ideas. We further break these distributions down by event topology.
No description provided.
No description provided.
No description provided.
At a square of the momentum transfer of 1.0 (GeV/c)2 the elastic scattering of electrons on deuterons has been measured at electron scattering angles of 8°, 60°, and 82°. From these data we have extracted a value of B(q2)=(0.59±1.20)×10−5 for the deuteron. This measurements extends the range in momentum transfer by almost a factor of 2 over the previous measurements.
No description provided.
No description provided.
None
No description provided.