Improving constraints on gluon spin-momentum correlations in transversely polarized protons via midrapidity open-heavy-flavor electrons in $p^{\uparrow}+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Aidala, C. ; et al.
Phys.Rev.D 107 (2023) 052012, 2023.
Inspire Record 2072832 DOI 10.17182/hepdata.130883

Polarized proton-proton collisions provide leading-order access to gluons, presenting an opportunity to constrain gluon spin-momentum correlations within transversely polarized protons and enhance our understanding of the three-dimensional structure of the proton. Midrapidity open-heavy-flavor production at $\sqrt{s}=200$ GeV is dominated by gluon-gluon fusion, providing heightened sensitivity to gluon dynamics relative to other production channels. Transverse single-spin asymmetries of positrons and electrons from heavy-flavor hadron decays are measured at midrapidity using the PHENIX detector at the Relativistic Heavy Ion Collider. These charge-separated measurements are sensitive to gluon correlators that can in principle be related to gluon orbital angular momentum via model calculations. Explicit constraints on gluon correlators are extracted for two separate models, one of which had not been constrained previously.

1 data table

Data from Figure 1 of open heavy flavor $e^{\pm}$ transverse single-spin asymmetries in transversely polarized p+p collisions as a function of $p_{T}$.


Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at $\sqrt{s_{NN}} = 19.6$ and 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 750 (2015) 64-71, 2015.
Inspire Record 1340691 DOI 10.17182/hepdata.72236

The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity $|y_{ee}|<1$ in minimum-bias Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened $\rho$ spectral function for $M_{ee}<1.1$ GeV/$c^{2}$. The integrated dielectron excess yield at $\sqrt{s_{NN}}$ = 19.6 GeV for $0.4<M_{ee}<0.75$ GeV/$c^2$, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at $\sqrt{s_{NN}}$ = 17.3 GeV. For $\sqrt{s_{NN}}$ = 200 GeV, the normalized excess yield in central collisions is higher than that at $\sqrt{s_{NN}}$ = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV is longer than those in peripheral collisions and at lower energies.

6 data tables

Reconstructed dielectron unlike-sign pairs, like-sign pairs and signal distributions, together with the signal to background ratio (S/B). All columns are presented as a function of dielectron invariant mass in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

Dielectron invariant mass spectrum in the STAR acceptance (|$y_{ee}$| < 1, 0.2 < $p_T^e$ < 3 GeV/c, |$\eta^e$ | < 1) after efficiency correction in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

Hadronic cocktail consisting of the decays of light hadrons and correlated decays of charm in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

More…

Measurement of the $e^+e^- \to \eta\pi^+\pi^-$ cross section in the center-of-mass energy range 1.22--2.00 GeV with the SND detector at the VEPP-2000 collider

The SND collaboration Aulchenko, V.M. ; Achasov, M.N. ; Barnyakov, A.Yu. ; et al.
Phys.Rev.D 91 (2015) 052013, 2015.
Inspire Record 1332929 DOI 10.17182/hepdata.73176

In the experiment with the SND detector at the VEPP-2000 $e^+e^-$ collider the cross section for the process $e^+e^-\to\eta\pi^+\pi^-$ has been measured in the center-of-mass energy range from 1.22 to 2.00 GeV. Obtained results are in agreement with previous measurements and have better accuracy. The energy dependence of the $e^+e^-\to\eta\pi^+\pi^-$ cross section has been fitted with the vector-meson dominance model. From this fit the product of the branching fractions $B(\rho(1450)\to\eta\pi^+\pi^-)B(\rho(1450)\to e^+e^-)$ has been extracted and compared with the same products for $\rho(1450)\to\omega\pi^0$ and $\rho(1450)\to\pi^+\pi^-$ decays. The obtained cross section data have been also used to test the conservation of vector current hypothesis.

1 data table

The c.m. energy ($\sqrt{s}$), integrated luminosity ($L$), detection efficiency ($\varepsilon$), number of selected signal events ($N$), radiative-correction factor ($1 + \delta$), measured $e^+e^- \to \eta \pi^+\pi^-$ Born cross section ($\sigma_B$). For the number of events and cross section the statistical error is quoted. The systematic uncertainty on the cross section is 8.3% at $\sqrt{s}<1.45$ GeV, 5.0% at $1.45<\sqrt{s}<1.60$ GeV, and 7.8% at $\sqrt{s}>1.60$ GeV.


Cross Section and Transverse Single-Spin Asymmetry of $\eta$ Mesons in $p^{\uparrow}+p$ Collisions at $\sqrt{s}=200$ GeV at Forward Rapidity

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 90 (2014) 072008, 2014.
Inspire Record 1300542 DOI 10.17182/hepdata.64267

We present a measurement of the cross section and transverse single-spin asymmetry ($A_N$) for $\eta$ mesons at large pseudorapidity from $\sqrt{s}=200$~GeV $p^{\uparrow}+p$ collisions. The measured cross section for $0.5<p_T<5.0$~GeV/$c$ and $3.0<|\eta|<3.8$ is well described by a next-to-leading-order perturbative-quantum-chromodynamics calculation. The asymmetries $A_N$ have been measured as a function of Feynman-$x$ ($x_F$) from $0.2<|x_{F}|<0.7$, as well as transverse momentum ($p_T$) from $1.0<p_T<4.5$~GeV/$c$. The asymmetry averaged over positive $x_F$ is $\langle{A_{N}}\rangle=0.061{\pm}0.014$. The results are consistent with prior transverse single-spin measurements of forward $\eta$ and $\pi^{0}$ mesons at various energies in overlapping $x_F$ ranges. Comparison of different particle species can help to determine the origin of the large observed asymmetries in $p^{\uparrow}+p$ collisions.

4 data tables

The measured ETA meson cross section, E*D3(SIG)/DP**3, versus PT at forward rapidity. The statistical and systematic uncertainties are type-A and type-B uncertainties respectively.

ASYM(PEAK) and ASYM(BG) for ETA mesons measured as a function of XF in the range 0.3 < ABS(XF) < 0.7 from the 4X4B triggered dataset. The values represented are the weighted mean of the South and North MPC (Muon Piston Calorimeter). The uncertainties listed are statistical only.

ASYM for ETA mesons measured as a function of XF in the range 0.2 < ABS(XF) < 0.7. Uncertainties listed are those due to the statistics, the XF uncorrelated uncertainties due to extracting the yields, and the correlated relative luminosity uncertainty.

More…

Exclusive ${\pi}^0$ electroproduction at $W>2$ GeV with CLAS

The CLAS collaboration Bedlinskiy, I. ; Kubarovsky, V. ; Niccolai, S. ; et al.
Phys.Rev.C 90 (2014) 025205, 2014.
Inspire Record 1294143 DOI 10.17182/hepdata.64122

Exclusive neutral-pion electroproduction ($ep\to e^\prime p^\prime \pi^0$) was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections $d^4\sigma/dtdQ^2dx_Bd\phi_\pi$ and structure functions $\sigma_T+\epsilon\sigma_L, \sigma_{TT}$ and $\sigma_{LT}$ as functions of $t$ were obtained over a wide range of $Q^2$ and $x_B$. The data are compared with Regge and handbag theoretical calculations. Analyses in both frameworks find that a large dominance of transverse processes is necessary to explain the experimental results. For the Regge analysis it is found that the inclusion of vector meson rescattering processes is necessary to bring the magnitude of the calculated and measured structure functions into rough agreement. In the handbag framework, there are two independent calculations, both of which appear to roughly explain the magnitude of the structure functions in terms of transversity generalized parton distributions.

18 data tables

The structure functions for Q**2 = 1.14 - 1.16 GeV**2 and XB = 0.131 - 0.133 as functions of t.

The structure functions for Q**2 = 1.38 GeV**2 and XB = 0.169 - 0.170 as functions of t.

The structure functions for Q**2 = 1.61 GeV**2 and XB = 0.186 - 0.187 as functions of t.

More…

Precision measurements of $g_1$ of the proton and the deuteron with 6 GeV electrons

The CLAS collaboration Prok, Y. ; Bosted, P. ; Kvaltine, N. ; et al.
Phys.Rev.C 90 (2014) 025212, 2014.
Inspire Record 1292133 DOI 10.17182/hepdata.64411

The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative QCD, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.

4 data tables

Results for G1(P)/F1(P) for the proton in bins of (XB;Q**2), along with average kinematic values and correction factors for each bin. All values are averaged over the event distribution.

Results for G1(DEUT)/F1(DEUT) for the deuteron in bins of (XB;Q**2), along with average kinematic values and correction factors for each bin. All values are averaged over the event distribution.

Results for G1(P)/F1(P) for the proton in bins of (W;Q**2), along with average kinematic values and correction factors for each bin. All values are averaged over the event distribution.

More…

Inclusive double-helicity asymmetries in neutral pion and eta meson production in $\vec{p}+\vec{p}$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 90 (2014) 012007, 2014.
Inspire Record 1282448 DOI 10.17182/hepdata.64716

Results are presented from data recorded in 2009 by the PHENIX experiment at the Relativistic Heavy Ion Collider for the double-longitudinal spin asymmetry, $A_{LL}$, for $\pi^0$ and $\eta$ production in $\sqrt{s} = 200$ GeV polarized $p$$+$$p$ collisions. Comparison of the $\pi^0$ results with different theory expectations based on fits of other published data showed a preference for small positive values of gluon polarization, $\Delta G$, in the proton in the probed Bjorken $x$ range. The effect of adding the new 2009 \pz data to a recent global analysis of polarized scattering data is also shown, resulting in a best fit value $\Delta G^{[0.05,0.2]}_{\mbox{DSSV}} = 0.06^{+0.11}_{-0.15}$ in the range $0.05<x<0.2$, with the uncertainty at $\Delta \chi^2 = 9$ when considering only statistical experimental uncertainties. Shifting the PHENIX data points by their systematic uncertainty leads to a variation of the best-fit value of $\Delta G^{[0.05,0.2]}_{\mbox{DSSV}}$ between $0.02$ and $0.12$, demonstrating the need for full treatment of the experimental systematic uncertainties in future global analyses.

9 data tables

PI0 ASYM(LL) measurements from 2005.

PI0 ASYM(LL) measurements from 2006.

PI0 ASYM(LL) measurements from 2009.

More…

Study of the process $e^+e^-\to\eta\gamma$ in the center-of-mass energy range 1.07--2.00 GeV

Achasov, M.N. ; Aulchenko, V.M. ; Barnyakov, A.Yu. ; et al.
Phys.Rev.D 90 (2014) 032002, 2014.
Inspire Record 1275333 DOI 10.17182/hepdata.62279

The $e^+e^-\to\eta\gamma$ cross section has been measured in the center-of-mass energy range 1.07--2.00 GeV using the decay mode $\eta\to 3\pi^0$, $\pi^0\to \gamma\gamma$. The analysis is based on 36 pb$^{-1}$ of integrated luminosity collected with the SND detector at the VEPP-2000 $e^+e^-$ collider. The measured cross section of about 35 pb at 1.5 GeV is explained by decays of the $\rho(1450)$ and $\phi(1680)$ resonances.

2 data tables

The energy interval and E+ E- --> ETA GAMMA Born cross section(SIG). The first error in the cross section is statistical, the second systematic. For the last two energy intervals, the upper limits at the 90 PCT confidence level are listed for the cross section.

The fitted values of the cross sections at the resonance peaks.


Transverse momentum cross section of $e^+e^-$ pairs in the $Z$-boson region from $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV

The CDF collaboration Aaltonen, T. ; Alvarez Gonzalez, B. ; Amerio, S. ; et al.
Phys.Rev.D 86 (2012) 052010, 2012.
Inspire Record 1124333 DOI 10.17182/hepdata.60522

The transverse momentum cross section of $e^+e^-$ pairs in the $Z$-boson mass region of 66-116 GeV/$c^2$ is precisely measured using Run II data corresponding to 2.1 fb$^{-1}$ of integrated luminosity recorded by the Collider Detector at Fermilab. The cross section is compared with quantum chromodynamic calculations. One is a fixed-order perturbative calculation at ${\cal O}(\alpha_s^2)$, and the other combines perturbative predictions at high transverse momentum with the gluon resummation formalism at low transverse momentum. Comparisons of the measurement with calculations show reasonable agreement. The measurement is of sufficient precision to allow refinements in the understanding of the transverse momentum distribution.

2 data tables

Total integrated cross section.

The differential PT cross section as a function of PT.


Resonances formed by anti-p p and decaying into pi0 pi0 eta for masses 1960-MeV to 2410-MeV.

Anisovich, A.V. ; Baker, C.A. ; Batty, C.J. ; et al.
Nucl.Phys.A 651 (1999) 253-276, 1999.
Inspire Record 504411 DOI 10.17182/hepdata.36177

Data on pbar-b annihilation in flight into pizero-pizero-eta are presented for nine beam momenta 600 to 1940 MeV/c. The strongest four intermediate states are found to be f_2(1270)-eta, a_2(1320)-pi, sigma-eta and a_0(980)-pi. Partial wave analysis is performed mainly to look for resonances formed by pbar-p and decaying into pizero-pizero-eta through these intermediate states. There is evidence for the following s-channel I = 0 resonances : two 4^{++} resonances with mass and width (M,Gamma) at (2044, 208) MeV and (2320+-30, 220+-30) MeV/ three 2^{++} resonances at (2020+-50, 200+-70) MeV, (2240+-40, 170+-50) MeV and (2370+-50, 320+-50) MeV/ two 3^{++} resonances at (2000+-40, 250+-40) MeV and (2280+-30, 210+-30) MeV/ a 1^{++} resonance at (2340+-40, 340+-40) MeV/ and two 2^{-+} resonances at (2040+-40, 190+-40) MeV and (2300+-40, 270+-40) MeV.

1 data table

No description provided.