The production of collinear muon pairs has been studied using the JADE detector at thee+e− storage ring at PETRA. Results for the total cross section and the angular distribution were obtained at centre of mass (cm) energies ranging from 12 to 46 GeV. The data correspond to an integrated luminosity offLdt>90 pb−1, of which 71.2 pb−1 were taken at\(\left\langle {\sqrt s } \right\rangle \)=34.4 GeV and 17 pb−1 at\(\left\langle {\sqrt s } \right\rangle \)=42.4 GeV. The results are compared to electroweak theories, in particular the “Standard Model”.
Forward-backward asymmetry calculated from a fit to the angular distribution of the form 1: + cos(theta)**2 + Bcos(theta).. Asymmetries quoted here are extrapolated to full solid angle. The asymmetry at sqrt(s) = 34.4 is -11.10 +- 1.75 +- 1.0 pct if the end-cap points are included.
No description provided.
We report on the properties of theZ resonance from 62 500Z decays into fermion pairs collected with the ALEPH detector at LEP, the Large Electron-Positron storage ring at CERN. We findMZ=(91.193±0.016exp±0.030LEP) GeV, ΓZ=(2497±31) MeV, σhad0=(41.86±0.66)nb, and for the partial widths Γinv=(489±24) MeV, Γhad(1754±27) MeV, Γee=(85.0±1.6)MeV, Γμμ=(80.0±2.5) MeV, and Γττ=(81.3±2.5) MeV, all in good agreement with the Standard Model. Assuming lepton universality and using a lepton sample without distinction of the final state we measure Γu=(84.3±1.3) MeV. The forward-backward asymmetry in leptonic decays is used to determine the vector and axial-vector weak coupling constants of leptors,gv2(MZ2)=(0.12±0.12)×10−2 andgA2(MZ2)=0.2528±0.0040. The number of light neutrino species isNν=2.91±0.13; the electroweak mixing angle is sin2θW(MZ2)=0.2291±0.0040.
No description provided.
No description provided.
No description provided.
A measurement of elastic deeply virtual Compton scattering gamma* p -> gamma p using e^+ p and e^- p collision data recorded with the H1 detector at HERA is presented. The analysed data sample corresponds to an integrated luminosity of 306 pb^-1, almost equally shared between both beam charges. The cross section is measured as a function of the virtuality Q^2 of the exchanged photon and the centre-of-mass energy W of the gamma* p system in the kinematic domain 6.5 < Q^2 < 80 GeV^2, 30 < W < 140 GeV and |t| < 1 GeV^2, where t denotes the squared momentum transfer at the proton vertex. The cross section is determined differentially in t for different Q^2 and W values and exponential t-slope parameters are derived. Using e^+ p and e^- p data samples, a beam charge asymmetry is extracted for the first time in the low Bjorken x kinematic domain. The observed asymmetry is attributed to the interference between Bethe-Heitler and deeply virtual Compton scattering processes. Experimental results are discussed in the context of two different models, one based on generalised parton distributions and one based on the dipole approach.
The measured beam charge asymmetry defined as the difference in the DSIG/DPHI distributions between E+ P and E- P collisions.
We report the first measurement of the longitudinal double-spin asymmetry $A_{LL}$ for mid-rapidity di-jet production in polarized $pp$ collisions at a center-of-mass energy of $\sqrt{s} = 200$ GeV. The di-jet cross section was measured and is shown to be consistent with next-to-leading order (NLO) perturbative QCD predictions. $A_{LL}$ results are presented for two distinct topologies, defined by the jet pseudorapidities, and are compared to predictions from several recent NLO global analyses. The measured asymmetries, the first such correlation measurements, support those analyses that find positive gluon polarization at the level of roughly 0.2 over the region of Bjorken-$x > 0.05$.
Di-jet A_LL asymmetry vs parton-level invariant mass for the same-sign di-jet topology. The systematic uncertainty on the mass includes contributions from jet energy scale, the correction to parton-level, and the difference between NLO and PYTHIA cross sections. The systematic uncertainty on the asymmetry includes contributions from trigger and reconstruction bias and residual transverse beam polarization components. A 6.5% uncertainty common to all points due to uncertainty on the measured beam polarizations is also present, but not included in the uncertainties quoted below.
Theoretical predictions for the di-jet A_LL asymmetry for the same-sign topology using the DSSV14 and NNPDFpol1.1 polarized PDF sets. The DSSV14 prediction is presented without uncertainty while the systematic uncertainty on the NNPDFpol1.1 prediction contains contributions from factorization and renormalization scale uncertainties and PDF uncertainties.
Di-jet A_LL asymmetry vs parton-level invariant mass for the opposite-sign di-jet topology. The systematic uncertainty on the mass includes contributions from jet energy scale, the correction to parton-level, and the difference between NLO and PYTHIA cross sections. The systematic uncertainty on the asymmetry includes contributions from trigger and reconstruction bias and residual transverse beam polarization components. A 6.5% uncertainty common to all points due to uncertainty on the measured beam polarizations is also present, but not included in the uncertainties quoted below.
By combining results from the MARK-J at PETRA on Bhabha scattering, μ + μ - and τ + τ - production with recent world data from neutrino-electron scattering experiments, we determine unique values for the leptonic weak neutral current coupling constants g V and g A in the framework of electroweak models containing a single Z 0 . In contrast to previous analyses, we only use data from purely leptonic interactions, and therefore avoid the inherent uncertainties resulting from the use of hadronic targets. From the MARK-J data alone in the context of the standard SU(2) ⊗ U (1) model of Glashow, Weinberg and Salam, we find sin 2 θ W =0.24±0.11.
No description provided.
We have measured, at an average centre-of-mass energy of 34.22 GeV a forward-backward charge asymmetry in the reaction e + e − → μ + μ − of value −0.161 ± 0.032. This demonstrates the existence of an axial vector neutral current with coupling strength of g e a g μ a =0.53 ± 0.10. We have also obtained a limit on the vector coupling strength of g e v g μ v <0.12. The Weinberg angle is found to be sin 2 θ W =0.29 +0.09 −0.11 . From the reaction e + e − → τ + τ − we have found g e a g τ a <0.34, g e v g τ v <0.55.
No description provided.
We have performed a high-statistics measurement of Bhabha scattering and of the production of hadrons in electron-positron annihilation at PETRA energies (12 GeV<~s<~36.7 GeV). Combining the results with measurements of μ+μ− and τ+τ− production enables us to compare our results with electroweak theory. We find sin2θw=0.27±0.08. This is in good agreement with the value obtained from neutrino experiments which were carried out in entirely different kinematic regions.
No description provided.
The dissociation of virtual photons, $\gamma^{\star} p \to X p$, in events with a large rapidity gap between $X$ and the outgoing proton, as well as in events in which the leading proton was directly measured, has been studied with the ZEUS detector at HERA. The data cover photon virtualities $Q^2>2$ GeV$^2$ and $\gamma^{\star} p$ centre-of-mass energies $40<W<240$ GeV, with $M_X>2$ GeV, where $M_X$ is the mass of the hadronic final state, $X$. Leading protons were detected in the ZEUS leading proton spectrometer. The cross section is presented as a function of $t$, the squared four-momentum transfer at the proton vertex and $\Phi$, the azimuthal angle between the positron scattering plane and the proton scattering plane. It is also shown as a function of $Q^2$ and $\xpom$, the fraction of the proton's momentum carried by the diffractive exchange, as well as $\beta$, the Bjorken variable defined with respect to the diffractive exchange.
The azimuthal asymmetries ALT and ATT as a function of X(NAME=POMERON).
The azimuthal asymmetries ALT and ATT as a function of BETA.
The azimuthal asymmetries ALT and ATT as a function of ABS(T).
We have measured the partial width and forward-backward charge asymmetry for the reaction e + e - →Z 0 →μ + μ - (γ). We obtain a partial width Γ μμ of 83.3±1.3(stat)±0.9(sys) MeV and the following values for the vector and axial vector couplings: g v =−0.062 −0.015 +0.020 and g A =−0.497 −0.005 +0.005 . From our measurement of the partial width and the mass of the Z 0 boson we determine the effective electroweak mixing angle, sin 2 θ w =0.232±0.005, and the neutral current coupling strength parameter, ϱ =0.998±0.016.
Forward backward charge asymmetry.
The production cross sections of the inclusive Drell-Yan processes W to l nu and Z/gamma to ll (l=e,mu) are measured in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector. The cross sections are reported integrated over a fiducial kinematic range, extrapolated to the full range and also evaluated differentially as a function of the W decay lepton pseudorapidity and the Z boson rapidity, respectively. Based on an integrated luminosity of about 35 pb^-1 collected in 2010, the precision of these measurements reaches a few per cent. The integrated and the differential W+- and Z/gamma cross sections in the e and mu channels are combined, and compared with perturbative QCD calculations, based on a number of different parton distribution sets available at NNLO.
Combined lepton charge asymmetry from W boson decays.
Fiducial cross sections of Z0 versus W+ from fitting the combined electron and muon decay data sets. The table shows the fitted ellipse centre in Z0 W+ space plus the ellipse radii and angle using the total uncertainties and only the experimental uncertainties.
Fiducial cross sections of Z0 versus W- from fitting the combined electron and muon decay data sets. The table shows the fitted ellipse centre in Z0 W- space plus the ellipse radii and angle using the total uncertainties and only the experimental uncertainties.