An experimental investigation of the structure of identified quark and gluon jets is presented. Observables related to both the global and internal structure of jets are measured; this allows for test
The measured jet broadening distributions (B) in quark and gluon jets seperately.
Measured distributions of -LN(Y2), where Y2 is the differential one-subjet rate, that is the value of the subjet scale parameter where 2 jets appear from the single jet.
The mean subjet multiplicity (-1) for gluon jets and quark jets for different values of the subject resolution parameter Y0.
The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays with the Delphi detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation CA/CF. The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resolution y, with NLLA calculations. The maximum of the ratio of the primary subjet splittings in quark and gluon jets is 2.77±0.11±0.10. Due to non-perturbative effects, the data are below the expectation at small y. The transition from the perturbative to the non-perturbative domain appears at smaller y for quark jets than for gluon jets. Combined with the observed behaviour of the higher rank splittings, this explains the relatively small multiplicity ratio between gluon and quark jets.
Scaled energy distribution of charged hadrons produced in Quark jets in 'Y'topology 3-JET events.
Scaled energy distribution of charged hadrons produced in Gluon jets in 'Y'topology 3-JET events.
Scaled energy distribution of charged hadrons produced in Quark jets in 'Mercedes' topology 3-JET events.
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Analyzing powers for πp elastic scattering were measured using the CHAOS spectrometer at energies spanning the Δ(1232) resonance. This work presents π+ data at the pion kinetic energies 117, 130, 139, 155, 169, 180, 193, 218, 241, and 267 MeV and π− data at 87, 117, 193, and 241 MeV, covering an angular range of 50°<~θc.m.<~180° at the higher energies and 90°<~θc.m.<~180° at the lower energies. Unique features of the spectrometer acceptance were employed to reduce systematic errors. Single-energy phase shift analyses indicate the resulting S11 and S31 phases favor the results of the SM95 phase shift analysis over that of the older KH80 analysis.
Measurement of the PI+ analysing power at 117 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.
Measurement of the PI+ analysing power at 139 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.
Measurement of the PI- analysing power at 87 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.
This paper presents a large solid angle measurement of the positive pion absorption cross section on 4He and its decomposition into partial channels. The total absorption cross sections at incident pion kinetic energies of Tπ+=70, 118, 162, and 239 MeV are 35±5, 52±4, 51±5, and 27±2 mb, respectively. These values are lower than those reported in some previous experiments. At all pion energies a large fraction of the absorption cross section is due to multinucleon channels.
Data with (C=PRC) are taken from PR C56, 1872.
The total cross section of the 4He(π+,π−) reaction was measured for π+ kinetic energies ranging from 70 to 130 MeV using the CHAOS spectrometer at TRIUMF and a liquid 4He target. Around Tπ=90MeV, total cross sections exceed conventional model predictions by a factor of 3, whereas at Tπ=70MeV and for Tπ>130MeV the data are consistent with these calculations. An attempt is made to understand this behavior by assuming the production of the hypothetical d′ dibaryon.
Double charge exchange reaction. section.
A systematic study of the spectra and yields of K+ and K− is reported by experiment E866 as a function of centrality in Au+Au collisions at 11.6A GeV/c. The invariant transverse spectra for both kaon species are well described by exponentials in mt, with inverse slope parameters that are largest at midrapidity and which increase with centrality. The inverse slopes of the K+ spectra are slightly larger than the inverse slopes of the K− spectra. The kaon rapidity density peaks at midrapidity with the K+ distribution wider in rapidity than K−. The integrated total yields of K+ and K− increase nonlinearly and steadily with the number of projectile participants. The yield per participant for kaons is two to three times larger than the yield from N−N collisions. This enhancement suggests that the majority of kaons in central Au+Au reactions are produced in secondary hadronic collisions. There is no evidence for an onset of additional kaon production from a possible small volume of baryon-rich quark-gluon plasma. The differences between K+ and K− rapidity distributions and transverse spectra are consistent with a lower phase space for K− production due to a higher energy threshold. These differences also exclude simple thermal models that assume emission from a common equilibrated system.
In this case FRAGB=NUCLEAR FRAG + PROTONS.
In this case FRAGB = NUCLEAR FRAG + PROTONS.
A nonzero difference of the analyzing powers due to charge symmetry breaking has been measured with high precision in np elastic scattering at a neutron beam energy of 347 MeV. The neutron beam and proton target were alternately polarized for the measurements of An and Ap. A mirror-symmetric detection system was used to cancel geometry-related systematic errors. From fits of the measured asymmetry angular distributions over the range of 53.4°<~θcm<~86.9°, the difference in the zero-crossing angles of the analyzing powers was determined to be 0.438°±0.054°(stat.)±0.051°(syst.) in the center-of-mass system. Using the experimentally determined slope of the analyzing power dA/dθ=(−1.35±0.05)×10−2 deg−1 (c.m.), this is equivalent to ΔA≡An−Ap=[59±7(stat.)±7(syst.)±2(syst.)]×10−4. The shape of ΔA(θ) in the vicinity of the zero-crossing angle has also been extracted. Predictions of nucleon-nucleon interaction models based on meson exchange agree well with the results.
(C=N) or (C=P) stands for polarized beam or target.
Polarization transfer observables in π + d elastic scattering have been measured for the first time. Four polarization transfer parameters were determined at pion energies T π =134 MeV and 180 MeV at scattering angles θ π ,C.M. between 100° and 140° using a deuteron target polarized perpendicular to the scattering plane and a deuteron tensor polarimeter. The data are compared to different predictions from the SAID phase shift analysis and Faddeev calculations.
Systematic and statistical errors are added in quadrature.
Systematic and statistical errors are added in quadrature.
The reaction pp → K + Λp was measured exclusively at the cooler synchrotron COSY at beam momenta of p Beam = 2.50 GeV/c and p Beam = 2.75 GeV/c using the TOF detector. Angular and momentum distributions were obtained for the full phase space of the reaction products. Total cross sections were extracted to be (2.7 ± 0.3) μ b and (12.0 ± 0.4) μ b, respectively. The polarization of the Λ -hyperon was determined as a function of its transversal momentum and was found to be negative for transverse momentum transfers of p T ≥ 0.3 GeV/c. The results together with existing data are compared with phenomenological parametrizations and model calculations on the basis of meson exchange.
Axis error includes +- 10/10 contribution (Overall normalization error).