We find an increase in ∑ ± production between E cm = 4 and 7 GeV which is consistent with charmed baryon production models. A search for the decay ∧ c − → ∑ ± π ± π − yields no significant peaks.
43 +- 16 ANTI-SIGMAS DETECTED ALTOGETHER.
We have observed e + e − hadrons at C.M. energies of 13 GeV and 17 GeV at PETRA using the TASSO detector. We find R (13 GeV) = 5.6 ± 0.7 and R (17 GeV) = 4.0 ± 0.7. The additional systematic uncertainty is 20%. Comparing inclusive charged hadron spectra we observe scaling between 5 GeV and 17 GeV for x = p / p beam > 0.2; however the 13 GeV cross section is above the 17 GeV cross section for smaller x . This may be due to copious bb̄ production. The events become increasingly jet like at high energies as evidenced by a shrinking sphericity distribution with increasing energy.
TAU HEAVY LEPTON CONTRIBUTION SUBTRACTED.
THESE DATA FOR S*D(SIG)/DX AT 13 AND 17 GEV ARE INCLUDED IN THE RECORD OF R. BRANDELIK ET AL., PL 89B, 418 (1980).
The polarisation parameters Σ, P and T have been measured for the process γ p→ π 0 p in the photon energy range 1300–2100 MeV and c.m. angles between 30° and 110°, in an experiment with a polarised beam and polarised target. The results are compared with a recent theoretical analysis which fits data from threshold to 16 GeV. The new data are in general agreement with the analysis, but with some significant discrepancies in detail.
No description provided.
No description provided.
No description provided.
The production of antineutrons and charged Σ's in e+e− annihilations has been measured at s=4 and 7 GeV and at the ψ(3.1) resonance. Two packages containing spark chambers, steel plates, and scintillation counters were added to each side of the Mark I detector at SPEAR. Antineutrons were identified by annihilations which produced large-angle charged prongs characteristic of a high-Q reaction. The resulting antineutron cross sections and momentum distributions are consistent with previous antiproton results. Charged Σ's were detected by forming mass combinations with the n's and charged tracks in the Mark I. A clear signal is seen in the 7-GeV and ψ data, with little or no signal at s=4 GeV. The increase in Σ± production between 4 and 7 GeV is consistent with simple expectations for charmed-baryon production. A search for the decays Λc−→Σ±π∓π− and Σc*Σc→Λc−π± yields no significant peaks. An upper limit, at the 90% confidence level, of σΛcB(Λc→Σ±π∓π−)<56 pb is set.
No description provided.
THE ANTI-SIGMA PRODUCTION CROSS SECTIONS WERE REPORTED IN T. FERGUSON ET AL., PL 79B, 161 (1978).
NOTE THAT TWICE THE ANTI-NEUTRON CROSS SECTIONS ARE PLOTTED IN THE FIGURES. NUMERICAL VALUES OF DATA ON FIGURES SUPPLIED BY T. FERGUSON.
Parity nonconservation is observed in the 6P122−7P122 transition in thallium. Absorption of circularly polarized 293-nm photons by 6P122 atoms in an E field results in polarization of the 7P122 state through interference of Stark E1 amplitudes with M1 and parity-nonconserving E1 amplitudes M and Ep. Detection of this polarization yields the circular dichroism δ=+(5.2±2.4)×10−3, which agrees in sign and magnitude with theoretical estimates based on the Weinberg-Salam model.
Used 99.999% pure thallium metal with natural isotopic abundances (29.5% Tl203, 70.5% Tl205). SIG(C+), SIG(C-) are the cross sections for absorption of 293-nm photons, with +,- helicity, respectively. Spin of the Tl nucleus is 1/2. Statistical errors only.
We report on the measurement of the reaction e+e−→e+e− with a large—solid-angle electromagnetic shower detector at center-of-mass energies s=13 and 17 GeV. Comparison of our results with predictions of quantum electrodynamics shows excellent agreement in both the angular distribution and energy dependence. Values of cutoff parameters are also given.
No description provided.
None
No description provided.
No description provided.
No description provided.
First results from the magnetic detector PLUTO at the new e + e − storage ring PETRA are shown. The ratio R of the cross section for hadron production to that for μ-pair production has been measured to be R = 5.0 ± 0.5 at 13 GeV and 4.3 ±0.5 at 17 GeV. Both values have an additional systematic error of 20%. The events show a typical 2-jet structure. The mean transverse momentum approaches a constant value with increasing energy implying a shrinkage of the jet opening angle.
TAU HEAVY LEPTON PAIR CONTRIBUTIONS HAVE BEEN SUBTRACTED. R AT 13 AND 17 GEV, TOGETHER WITH SOME SELECTED LOWER ENERGY MEASUREMENTS FROM PLUTO AT DORIS.
Data from earlier preprint DESY-79-06. NUMERICAL VALUES MEASURED OFF GRAPH IN PREPRINT.
The cross section for the K L 0 p elastic scattering has been measured for the first time. The incident momentum and momentum transfer ranges are 3 ⩽ p ⩽ 13 GeV/ c , 0.1 ⩽ | t | ⩽ 1.3 GeV 2 . The results are compared to those of other experiments related to ours by isotopic spin conservation, finding agreement with some and discrepancies with others. The differential cross sections have been parametrized in the form A e bt . The coefficients show little or no dependence on energy, with A ≅ 9.8 mb · GeV −2 and b ≅ 4.7 GeV −2 . The effective linear trajectory has been determined and gives α 0 = 0.95 ± 0.15, α ′ = −0.35 ± 0.48 GeV −2 , in good agreement with dominance by pomeron exchange.
CROSS SECTIONS DEDUCED FROM THE 46 PCT OF EVENTS WHICH YIELD UNIQUE SOLUTIONS.
<RAW> CROSS SECTIONS DEDUCED FROM A STATISTICAL TREATMENT OF ALL EVENTS.
<SMOOTHED> CROSS SECTIONS DEDUCED FROM A STATISTICAL TREATMENT OF ALL EVENTS.
A high statistics measurement of the reaction π − p → π 0 n has been performed at the Serpukhov accelerator for 15, 20, 25, 30 and 40 GeV/ c incident pion momentum using the NICE set-up with its associated 648-channel hodoscope spectrometer for γ-ray detection. More than 3 million charge-exchange events have been recorded in total. It is found that the spin-flip and non-spin-flip amplitudes can be parametrized, for small | t |, as exponentials with the same slopes to within a few percent. Also the behaviour of the differential cross section for small and medium | t | agrees with the prediction of a geometrical s -channel model which describes binary reactions in terms of a complex pole b 0 ( s ). The imaginary part of this universal pole, Im b 0 ( s ), has been determined and found to be growing logarithmically with s .
No data in this table.