Elliptic anisotropy measurement of the f$_0$(980) hadron in proton-lead collisions and evidence for its quark-antiquark composition

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIN-20-002, 2023.
Inspire Record 2741119 DOI 10.17182/hepdata.146017

Despite the f$_0$(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark ($\mathrm{q\bar{q}}$) meson, a tetraquark ($\mathrm{q\bar{q}q\bar{q}}$) exotic state, a kaon-antikaon ($\mathrm{K\bar{K}}$) molecule, or a quark-antiquark-gluon ($\mathrm{q\bar{q}g}$) hybrid. This paper reports strong evidence that the f$_0$(980) state is an ordinary $\mathrm{q\bar{q}}$ meson, inferred from the scaling of elliptic anisotropies ($v_2$) with the number of constituent quarks ($n_\mathrm{q}$), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f$_0$(980) state is reconstructed via its dominant decay channel f$_0$(980) $\to$$\pi^+\pi^-$, in proton-lead collisions recorded by the CMS experiment at the LHC, and its $v_2$ is measured as a function of transverse momentum ($p_\mathrm{T}$). It is found that the $n_q$ = 2 ($\mathrm{q\bar{q}}$ state) hypothesis is favored over $n_q$ = 4 ($\mathrm{q\bar{q}q\bar{q}}$ or $\mathrm{K\bar{K}}$ states) by 7.7, 6.3, or 3.1 standard deviations in the $p_\mathrm{T}$$\lt$ 10, 8, or 6 GeV/$c$ ranges, respectively, and over $n_\mathrm{q}$ = 3 ($\mathrm{q\bar{q}g}$ hybrid state) by 3.5 standard deviations in the $p_\mathrm{T}$$\lt$ 8 GeV/$c$ range. This result represents the first determination of the quark content of the f$_0$(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates.

6 data tables

The elliptic flow, $v_{2}$, for $f_0(980)$ as a function of $p_{T}$ in pPb collision at 8.16 TeV.

The elliptic flow after nonflow subtraction, $v_{2}^{sub}$, for $f_0(980)$ as a function of $p_{T}$ in pPb collision at 8.16 TeV.

The elliptic flow after nonflow subtraction, $v_{2}^{sub}/2$, for $f_0(980)$ as a function of $<KE_{T}>/2$ in pPb collision at 8.16 TeV.

More…

Study of $Z \to ll\gamma$ decays at $\sqrt s~$= 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 84 (2024) 195, 2024.
Inspire Record 2712353 DOI 10.17182/hepdata.131524

This paper presents a study of $Z \to ll\gamma~$decays with the ATLAS detector at the Large Hadron Collider. The analysis uses a proton-proton data sample corresponding to an integrated luminosity of 20.2 fb$^{-1}$ collected at a centre-of-mass energy $\sqrt{s}$ = 8 TeV. Integrated fiducial cross-sections together with normalised differential fiducial cross-sections, sensitive to the kinematics of final-state QED radiation, are obtained. The results are found to be in agreement with state-of-the-art predictions for final-state QED radiation. First measurements of $Z \to ll\gamma\gamma$ decays are also reported.

77 data tables

Unfolded $M(l^{+}\gamma)$ distribution for $Z \to ee\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 63717.4 $\pm$ 252.4, NPowHeg truth =338714.

Unfolded $M(l^{-}\gamma)$ distribution for $Z \to ee\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 63855.8 $\pm$ 252.7 , NPowHeg truth =338708.

Unfolded $M(l^{+}\gamma)$ distribution for $Z \to \mu\mu\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 64809.8 $\pm$ 254.6, NPowHeg truth =634285.

More…

Study of azimuthal anisotropy of $\Upsilon$(1S) mesons in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 850 (2024) 138518, 2024.
Inspire Record 2706679 DOI 10.17182/hepdata.131311

The azimuthal anisotropy of $\Upsilon$(1S) mesons in high-multiplicity proton-lead collisions is studied using data collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 8.16 TeV. The $\Upsilon$(1S) mesons are reconstructed using their dimuon decay channel. The anisotropy is characterized by the second Fourier harmonic coefficients, found using a two-particle correlation technique, in which the $\Upsilon$(1S) mesons are correlated with charged hadrons. A large pseudorapidity gap is used to suppress short-range correlations. Nonflow contamination from the dijet background is removed using a low-multiplicity subtraction method, and the results are presented as a function of $\Upsilon$(1S) transverse momentum. The azimuthal anisotropies are smaller than those found for charmonia in proton-lead collisions at the same collision energy, but are consistent with values found for $\Upsilon$(1S) mesons in lead-lead interactions at a nucleon-nucleon center-of-mass energy of 5.02 TeV.

2 data tables

The $p_{\mathrm{T}}$ dependent $v_{2}^{\textrm{sub}}$ values of $\Upsilon(1S)$ mesons measured in the high-multiplicity region of $70 \leq N^{\text{offline}}_{\text{trk}} < 300$, where a low-multiplicity region of $N^{\text{offline}}_{\text{trk}} < 50$ is used to estimate and correct for the dijet contribution.

The $p_{\mathrm{T}}$ dependent $v_{2}^{\textrm{sub}}$ values of $\Upsilon(1S)$ mesons measured in the high-multiplicity region of $70 \leq N^{\text{offline}}_{\text{trk}} < 300$, where a low-multiplicity region of $N^{\text{offline}}_{\text{trk}} < 50$ is used to estimate and correct for the dijet contribution.


A precise measurement of the Z-boson double-differential transverse momentum and rapidity distributions in the full phase space of the decay leptons with the ATLAS experiment at $\sqrt s$ = 8 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 84 (2024) 315, 2024.
Inspire Record 2698794 DOI 10.17182/hepdata.144246

This paper presents for the first time a precise measurement of the production properties of the Z boson in the full phase space of the decay leptons. The measurement is obtained from proton-proton collision data collected by the ATLAS experiment in 2012 at $\sqrt s$ = 8 TeV at the LHC and corresponding to an integrated luminosity of 20.2 fb$^{-1}$. The results, based on a total of 15.3 million Z-boson decays to electron and muon pairs, extend and improve a previous measurement of the full set of angular coefficients describing Z-boson decay. The double-differential cross-section distributions in Z-boson transverse momentum p$_T$ and rapidity y are measured in the pole region, defined as 80 $<$ m $<$ 100 GeV, over the range $|y| <$ 3.6. The total uncertainty of the normalised cross-section measurements in the peak region of the p$_T$ distribution is dominated by statistical uncertainties over the full range and increases as a function of rapidity from 0.5-1.0% for $|y| <$ 2.0 to 2-7% at higher rapidities. The results for the rapidity-dependent transverse momentum distributions are compared to state-of-the-art QCD predictions, which combine in the best cases approximate N$^4$LL resummation with N$^3$LO fixed-order perturbative calculations. The differential rapidity distributions integrated over p$_T$ are even more precise, with accuracies from 0.2-0.3% for $|y| <$ 2.0 to 0.4-0.9% at higher rapidities, and are compared to fixed-order QCD predictions using the most recent parton distribution functions. The agreement between data and predictions is quite good in most cases.

10 data tables

Measured $p_T$ cross sections in full-lepton phase space for |y| < 0.4.

Measured $p_T$ cross sections in full-lepton phase space for 0.4 < |y| < 0.8.

Measured $p_T$ cross sections in full-lepton phase space for 0.8 < |y| < 1.2.

More…

Multiplicity and transverse momentum dependence of charge-balance functions in pPb and PbPb collisions at LHC energies

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
CMS-HIN-21-017, 2023.
Inspire Record 2679254 DOI 10.17182/hepdata.135972

Measurements of the charge-dependent two-particle angular correlation function in proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV and lead-lead (PbPb) collisions at$\sqrt{s_\mathrm{NN}}$ = 5.02 TeV are reported. The pPb and PbPb datasets correspond to integrated luminosities of 186\nbinv and 0.607 nb$^{-1}$, respectively, and were collected using the CMS detector at the CERN LHC. The charge-dependent correlations are characterized by balance functions of same- and opposite-sign particle pairs. The balance functions, which contain information about the creation time of charged particle pairs and the development of collectivity, are studied as functions of relative pseudorapidity ($\Delta \eta$) and relative azimuthal angle ($\Delta \phi$), for various multiplicity and transverse momentum ($p_\mathrm{T}$) intervals. A multiplicity dependence of the balance function is observed in $\Delta \eta$ and $\Delta \phi$ for both systems. The width of the balance functions decreases towards high-multiplicity collisions in the momentum region $\lt$2 GeV, for pPb and PbPb results. No multiplicity dependence is observed at higher transverse momentum. The data are compared with HYDJET, HIJING and AMPT generator predictions, none of which capture completely the multiplicity dependence seen in the data.

56 data tables

$\Delta\eta$ projection of balance function in low $p_{T}$ in 0-10% centrality

$\Delta\eta$ projection of balance function in low $p_{T}$ in 30-40% centrality

$\Delta\eta$ projection of balance function in low $p_{T}$ in 70-80% centrality

More…

First measurement of the forward rapidity gap distribution in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Ambrogi, Federico ; et al.
Phys.Rev.D 108 (2023) 092004, 2023.
Inspire Record 2624308 DOI 10.17182/hepdata.88293

For the first time at LHC energies, the forward rapidity gap spectra from proton-lead collisions for both proton and lead dissociation processes are presented. The analysis is performed over 10.4 units of pseudorapidity at a center-of-mass energy per nucleon pair of $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV, almost 300 times higher than in previous measurements of diffractive production in proton-nucleus collisions. For lead dissociation processes, which correspond to the pomeron-lead event topology, the EPOS-LHC generator predictions are a factor of two below the data, but the model gives a reasonable description of the rapidity gap spectrum shape. For the pomeron-proton topology, the EPOS-LHC, QGSJET II, and HIJING predictions are all at least a factor of five lower than the data. The latter effect might be explained by a significant contribution of ultra-peripheral photoproduction events mimicking the signature of diffractive processes. These data may be of significant help in understanding the high energy limit of quantum chromodynamics and for modeling cosmic ray air showers.

14 data tables

Differential cross section for events with Pomeron-Lead ($\mathrm{I\!P}\mathrm{Pb}$) topology obtained at the reconstruction level for $|\eta| < 3$ region. Forward Rapidity Gap definition: $|\eta| < 2.5$: $p_{T}^{track} < 200$ MeV and $\sum \limits_{bin} E^{PF} < 6$ GeV $|\eta| \in [2.5,3.0]$: $\sum \limits_{bin} E_{neutral}^{PF} < 13.4$ GeV

Differential cross section for events with Pomeron-Proton ($\mathrm{I\!P}\mathrm{p} + \gamma \mathrm{p}$) topology obtained at the reconstruction level for $|\eta| < 3$ region. Forward Rapidity Gap definition: $|\eta| < 2.5$: $p_{T}^{track} < 200$ MeV and $\sum \limits_{bin} E^{PF} < 6$ GeV $|\eta| \in [2.5,3.0]$: $\sum \limits_{bin} E_{neutral}^{PF} < 13.4$ GeV

Reconstruction level differential cross section spectla, obtained for the central acceptance, $|\eta| < 3$, for events with Pomeron-Lead ($\mathrm{I\!P}\mathrm{Pb}$) topology compared to the to the EPOS-LHC predictions, broken down into the non-diffractive (ND), central diffractive (CD), single diffractive (SD) and double diffractive (DD) components. Forward Rapidity Gap definition: $|\eta| < 2.5$: $p_{T}^{track} < 200$ MeV and $\sum \limits_{bin} E^{PF} < 6$ GeV $|\eta| \in [2.5,3.0]$: $\sum \limits_{bin} E_{neutral}^{PF} < 13.4$ GeV

More…

J/$\psi$ production at midrapidity in p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 07 (2023) 137, 2023.
Inspire Record 2593303 DOI 10.17182/hepdata.138403

The production of inclusive, prompt and non-prompt J/$\psi$ was studied for the first time at midrapidity ($ -1.37 < y_{\rm cms} < 0.43$) in p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV with the ALICE detector at the LHC. The inclusive J/$\psi$ mesons were reconstructed in the dielectron decay channel in the transverse momentum ($p_{\rm T}$) interval $0 < p_{\rm T} < 14$ GeV/$c$ and the prompt and non-prompt contributions were separated on a statistical basis for $p_{\rm T} > 2$ GeV/$c$. The study of the J/$\psi$ mesons in the dielectron channel used for the first time in ALICE online single-electron triggers from the Transition Radiation Detector, providing a data sample corresponding to an integrated luminosity of $689 \pm 13 \mu{\rm b}^{-1}$. The proton$-$proton reference cross section for inclusive J/$\psi$ was obtained based on interpolations of measured data at different centre-of-mass energies and a universal function describing the $p_{\rm T}$-differential J/$\psi$ production cross sections. The $p_{\rm T}$-differential nuclear modification factors $R_{\rm pPb}$ of inclusive, prompt, and non-prompt J/$\psi$ are consistent with unity and described by theoretical models implementing only nuclear shadowing.

8 data tables

d$^2\sigma$/d$y$d$p_{\rm T}$ in bins of $p_{\mathrm{T}}^{J/\psi}$ for inclusive J/$\psi$ in p--Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV.

Nuclear modification factor ($R_{pPb}$) of inclusive J/$\psi$ in p--Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV at midrapidity.

$p_\mathrm{T}$ integrated nuclear modification factor ($R_{pPb}$) of inclusive J/$\psi$ in p--Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV at midrapidity.

More…

Combination of inclusive top-quark pair production cross-section measurements using ATLAS and CMS data at $\sqrt{s}= 7$ and 8 TeV

The ATLAS & CMS collaborations Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 07 (2023) 213, 2023.
Inspire Record 2088291 DOI 10.17182/hepdata.110250

A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron-muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and about 20 fb$^{-1}$ at $\sqrt{s}=8$ TeV for each experiment. The combined cross-sections are determined to be $178.5 \pm 4.7$ pb at $\sqrt{s}=7$ TeV and $243.3^{+6.0}_{-5.9}$ pb at $\sqrt{s}=8$ TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be $R_{8/7}= 1.363\pm 0.032$. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $m_t^\text{pole} = 173.4^{+1.8}_{-2.0}$ GeV and $\alpha_\text{s}(m_Z)= 0.1170^{+ 0.0021}_{-0.0018}$.

2 data tables

Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.

Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.


Strange hadron collectivity in pPb and PbPb collisions

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2023) 007, 2023.
Inspire Record 2075415 DOI 10.17182/hepdata.115425

The collective behavior of K$^0_\mathrm{S}$ and $\Lambda/\bar{\Lambda}$ strange hadrons is studied by measuring the elliptic azimuthal anisotropy ($v_2$) using the scalar-product and multiparticle correlation methods. Proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV and lead-lead (PbPb) collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV collected by the CMS experiment at the LHC are investigated. Nonflow effects in the pPb collisions are studied by using a subevent cumulant analysis and by excluding events where a jet with transverse momentum greater than 20\GeV is present. The strange hadron $v_2$ values extracted in \pPb collisions via the four- and six-particle correlation method are found to be nearly identical, suggesting the collective behavior. Comparisons of the pPb and PbPb results for both strange hadrons and charged particles illustrate how event-by-event flow fluctuations depend on the system size.

55 data tables

The elliptic flow $v_2\{4\}$ for charged hadron as a function of $p_T$ in PbPb collision at 5.02 TeV.

The elliptic flow $v_2\{6\}$ for charged hadron as a function of $p_T$ in PbPb collision at 5.02 TeV.

The elliptic flow $v_2\{8\}$ for charged hadron as a function of $p_T$ in PbPb collision at 5.02 TeV.

More…

Measurement of $\psi$(2S) production as a function of charged-particle pseudorapidity density in pp collisions at $\sqrt{s}$ = 13 TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV with ALICE at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 06 (2023) 147, 2023.
Inspire Record 2070433 DOI 10.17182/hepdata.135830

Production of inclusive charmonia in pp collisions at center-of-mass energy of $\sqrt{s}$ = 13 TeV and p-Pb collisions at center-of-mass energy per nucleon pair of $\sqrt{s_{\rm NN}}$ = 8.16 TeV is studied as a function of charged-particle pseudorapidity density with ALICE. Ground and excited charmonium states (J/$\psi$, $\psi$(2S)) are measured from their dimuon decays in the interval of rapidity in the center-of-mass frame $2.5 < y_{\rm cms} < 4.0$ for pp collisions, and $2.03 < y_{\rm cms} < 3.53$ and $-4.46 < y_{\rm cms} < -2.96$ for p-Pb collisions. The charged-particle pseudorapidity density is measured around midrapidity ($|\eta|<1.0$). In pp collisions, the measured charged-particle multiplicity extends to about six times the average value, while in p-Pb collisions at forward (backward) rapidity a multiplicity corresponding to about three (four) times the average is reached. The $\psi$(2S) yield increases with the charged-particle pseudorapidity density. The ratio of $\psi$(2S) over J/$\psi$ yield does not show a significant multiplicity dependence in either colliding system, suggesting a similar behavior of J/$\psi$ and $\psi$(2S) yields with respect to charged-particle pseudorapidity density. Results for the $\psi$(2S) yield and its ratio with respect to J/$\psi$ agree with available model calculations.

6 data tables

Ratio of measured PSI(2S) cross section in charged-particle multiplicity intervals and integrated in multiplicity.

Ratio of measured PSI(2S) cross section in charged-particle multiplicity intervals and integrated in multiplicity.

Ratio of measured PSI(2S) cross section in charged-particle multiplicity intervals and integrated in multiplicity.

More…

Measurements of the associated production of a W boson and a charm quark in proton-proton collisions at $\sqrt{s}$ = 8 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Bergauer, Thomas ; et al.
Eur.Phys.J.C 82 (2022) 1094, 2022.
Inspire Record 1982672 DOI 10.17182/hepdata.114364

Measurements of the associated production of a W boson and a charm (c) quark in proton-proton collisions at a centre-of-mass energy of 8 TeV are reported. The analysis uses a data sample corresponding to a total integrated luminosity of 19.7 fb$^{-1}$ collected by the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm quark jets are selected using distinctive signatures of charm hadron decays. The product of the cross section and branching fraction $\sigma$(pp $\to$ W + c + X) $\mathcal{B}$(W $\to$$\ell\nu$), where $\ell$ = e or $\mu$, and the cross section ratio $\sigma$(pp $\to$ W$^+$ + c + X) / $\sigma$(pp $\to$ W$^-$ + $\mathrm{\bar{c}}$ + X) are measured inclusively and differentially as functions of the pseudorapidity and of the transverse momentum of the lepton from the W boson decay. The results are compared with theoretical predictions. The impact of these measurements on the determination of the strange quark distribution is assessed.

6 data tables

Signal yields after background subtraction, efficiency*acceptance correction factors, and cross section measurements for the four channels (W decay to muon or electron and charm identification via muon or secondary vertex inside a jet).

Measured production cross sections $\sigma(W^+ + \overline{c})$, $\sigma(W^- + c)$ and their ratio.

Measured diferential cross sections $\sigma(W^- + c) + \sigma(W^+ + \overline{c})$ as a function of the absolute value of the pseudorapidity of the lepton from the W decay.

More…

Measurement of $J/\psi$ production cross-sections in $pp$ collisions at $\sqrt{s}=5$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Beteta, C. Abellán ; et al.
JHEP 11 (2021) 181, 2021.
Inspire Record 1915030 DOI 10.17182/hepdata.115512

The production cross-sections of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=5$ TeV are measured using a data sample corresponding to an integrated luminosity of $9.13\pm0.18~\text{pb}^{-1}$, collected by the LHCb experiment. The cross-sections are measured differentially as a function of transverse momentum, $p_{\text{T}}$, and rapidity, $y$, and separately for $J/\psi$ mesons produced promptly and from beauty hadron decays (nonprompt). With the assumption of unpolarised $J/\psi$ mesons, the production cross-sections integrated over the kinematic range $0<p_{\text{T}}<20~\text{GeV}/c$ and $2.0<y<4.5$ are $8.154\pm0.010\pm0.283~\mu\text{b}$ for prompt $J/\psi$ mesons and $0.820\pm0.003\pm0.034~\mu\text{b}$ for nonprompt $J/\psi$ mesons, where the first uncertainties are statistical and the second systematic. These cross-sections are compared with those at $\sqrt{s}=8$ TeV and $13$ TeV, and are used to update the measurement of the nuclear modification factor in proton-lead collisions for $J/\psi$ mesons at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\text{NN}}}=5$ TeV. The results are compared with theoretical predictions.

20 data tables

Double-differential production cross-sections for prompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Double-differential production cross-sections for nonprompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Single-differential production cross-sections for prompt $J/\psi$ mesons as a function of $p_\text{T}$. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, and the last are uncorrelated systematic uncertainties.

More…

Version 2
Measurement of the top quark mass using events with a single reconstructed top quark in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 12 (2021) 161, 2021.
Inspire Record 1911567 DOI 10.17182/hepdata.102987

A measurement of the top quark mass is performed using a data sample enriched with single top quark events produced in the $t$ channel. The study is based on proton-proton collision data, corresponding to an integrated luminosity of 35.9 fb$^{-1}$, recorded at $\sqrt{s}$ = 13 TeV by the CMS experiment at the LHC in 2016. Candidate events are selected by requiring an isolated high-momentum lepton (muon or electron) and exactly two jets, of which one is identified as originating from a bottom quark. Multivariate discriminants are designed to separate the signal from the background. Optimized thresholds are placed on the discriminant outputs to obtain an event sample with high signal purity. The top quark mass is found to be 172.13 $^{+0.76}_{-0.77}$ GeV, where the uncertainty includes both the statistical and systematic components, reaching sub-GeV precision for the first time in this event topology. The masses of the top quark and antiquark are also determined separately using the lepton charge in the final state, from which the mass ratio and difference are determined to be 0.9952 $^{+0.0079}_{-0.0104}$ and 0.83 $^{+1.79}_{-1.35}$ GeV, respectively. The results are consistent with $CPT$ invariance.

38 data tables

Top quark mass measured inclusive of lepton flavor and charge. The uncertainties are given in two parts, the first part is the combination of statistical (stat) and profiled (prof) uncertainties and the second part is for the experimental (ext) uncetrinaties.

The top quark mass measured inclusive of lepton flavor and charge. The uncertainties are given in two parts, the first is the combination of statistical (stat) and profiled systematic (prof) uncertainties and the second is the externalized systematic (ext) uncertainties.

Top quark mass measured inclusive of lepton flavor and for positively charged lepton.

More…

Search for lepton-flavor-violation in $Z$-boson decays with $\tau$-leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.Lett. 127 (2022) 271801, 2022.
Inspire Record 1865746 DOI 10.17182/hepdata.105516

A search for lepton-flavor-violating $Z\to e\tau$ and $Z\to\mu\tau$ decays with $pp$ collision data recorded by the ATLAS detector at the LHC is presented. This analysis uses 139 fb$^{-1}$ of Run 2 $pp$ collisions at $\sqrt{s}=13$ TeV and is combined with the results of a similar ATLAS search in the final state in which the $\tau$-lepton decays hadronically, using the same data set as well as Run 1 data. The addition of leptonically decaying $\tau$-leptons significantly improves the sensitivity reach for $Z\to\ell\tau$ decays. The $Z\to\ell\tau$ branching fractions are constrained in this analysis to $\mathcal{B}(Z\to e\tau)<7.0\times10^{-6}$ and $\mathcal{B}(Z\to \mu\tau)<7.2\times10^{-6}$ at 95% confidence level. The combination with the previously published analyses sets the strongest constraints to date: $\mathcal{B}(Z\to e\tau)<5.0\times10^{-6}$ and $\mathcal{B}(Z\to \mu\tau)<6.5\times10^{-6}$ at 95% confidence level.

16 data tables

The best-fit predicted and observed distributions of the combined NN output in the low-$p_\text{T}$-SR for the $e\tau_\mu$ channel. The first and last bin include underflow and overflow events, respectively.

The best-fit predicted and observed distributions of the combined NN output in the low-$p_\text{T}$-SR for the $\mu\tau_e$ channel. The first and last bin include underflow and overflow events, respectively.

The best-fit predicted and observed distributions of the combined NN output in the high-$p_\text{T}$-SR for the $e\tau_\mu$ channel. The first and last bin include underflow and overflow events, respectively.

More…

Version 4
Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 81 (2021) 488, 2021.
Inspire Record 1850544 DOI 10.17182/hepdata.102525

Production cross sections of the Higgs boson are measured in the H $\to$ ZZ $\to$ $4\ell$ ($\ell$ $=$ e, $\mu$) decay channel. A data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS detector at the LHC and corresponding to an integrated luminosity of 137 fb$^{-1}$ is used. The signal strength modifier $\mu$, defined as the ratio of the Higgs boson production rate in the $4\ell$ channel to the standard model (SM) expectation, is measured to be $\mu$ $=$ 0.94 $\pm$ 0.07 (stat) ${}^{+0.09}_{-0.08}$ (syst) at a fixed value of $m_H$ = 125.38 GeV. The signal strength modifiers for the individual Higgs boson production modes are also reported. The inclusive fiducial cross section for the H $\to$ $4\ell$ process is measured to be 2.84 $^{+0.23}_{-0.22}$ (stat) ${}^{+0.26}_{-0.21}$ (syst) fb, which is compatible with the SM prediction of 2.84 $\pm$ 0.15 fb for the same fiducial region. Differential cross sections as a function of the transverse momentum and rapidity of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet are measured. A new set of cross section measurements in mutually exclusive categories targeted to identify production mechanisms and kinematical features of the events is presented. The results are in agreement with the SM predictions.

52 data tables

Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.

Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.

Integrated Fiducial Higgs cross section. The first uncertainty is the combined statistical uncertainty, the second is the combined systematic uncertainty. As described in the publication, the fiducial volume for 7 and 8 TeV is different than for 13 TeV.

More…

Study of Drell-Yan dimuon production in proton-lead collisions at $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2021) 182, 2021.
Inspire Record 1849180 DOI 10.17182/hepdata.88292

Differential cross sections for the Drell-Yan process, including Z boson production, using the dimuon decay channel are measured in proton-lead (pPb) collisions at a nucleon-nucleon centre-of-mass energy of 8.16 TeV. A data sample recorded with the CMS detector at the LHC is used, corresponding to an integrated luminosity of 173 nb$^{-1}$. The differential cross section as a function of the dimuon mass is measured in the range 15-600 GeV, for the first time in proton-nucleus collisions. It is also reported as a function of dimuon rapidity over the mass ranges 15-60 GeV and 60-120 GeV, and ratios for the p-going over the Pb-going beam directions are built. In both mass ranges, the differential cross sections as functions of the dimuon transverse momentum $p_\mathrm{T}$ and of a geometric variable $\phi^*$ are measured, where $\phi^*$ highly correlates with $p_\mathrm{T}$ but is determined with higher precision. In the Z mass region, the rapidity dependence of the data indicate a modification of the distribution of partons within a lead nucleus as compared to the proton case. The data are more precise than predictions based upon current models of parton distributions.

28 data tables

Differential fiducial cross section (without the acceptance correction) for the DY process measured in the muon channel, as a function of dimuon invariant mass. The quoted error is the quadratic sum of the statistical and systematic uncertainties. The global normalisation uncertainty of 3.5% is listed separately.

Differential fiducial cross section (without the acceptance correction) for the DY process measured in the muon channel, as a function of rapidity in the centre-of-mass frame for $15<m_{\mu\mu}<60$ GeV. The quoted error is the quadratic sum of the statistical and systematic uncertainties. The global normalisation uncertainty of 3.5% is listed separately.

Differential fiducial cross section (without the acceptance correction) for the DY process measured in the muon channel, as a function of rapidity in the centre-of-mass frame for $60<m_{\mu\mu}<120$ GeV. The quoted error is the quadratic sum of the statistical and systematic uncertainties. The global normalisation uncertainty of 3.5% is listed separately.

More…

Version 2
Measurements of angular distance and momentum ratio distributions in three-jet and Z + two-jet final states in pp collisions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 81 (2021) 852, 2021.
Inspire Record 1847230 DOI 10.17182/hepdata.106642

Collinear (small-angle) and large-angle, as well as soft and hard radiations are investigated in three-jet and Z + two-jet events collected in proton-proton collisions at the LHC. The normalized production cross sections are measured as a function of the ratio of transverse momenta of two jets and their angular separation. The measurements in the three-jet and Z + two-jet events are based on data collected at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.8 fb$^{-1}$. The Z + two-jet events are reconstructed in the dimuon decay channel of the Z boson. The three-jet measurement is extended to include $\sqrt{s} =$ 13 TeV data corresponding to an integrated luminosity of 2.3 fb$^{-1}$. The results are compared to predictions from event generators that include parton showers, multiple parton interactions, and hadronization. The collinear and soft regions are in general well described by parton showers, whereas the regions of large angular separation are often best described by calculations using higher-order matrix elements.

24 data tables

Three-jet events $p_{\mathrm{T}3}/p_{\mathrm{T}2}$ for small-angle radiation ($\Delta R_{23}$ < 1.0)

Three-jet events $p_{\mathrm{T}3}/p_{\mathrm{T}2}$ for small-angle radiation ($\Delta R_{23}$ < 1.0)

Three-jet events $p_{\mathrm{T}3}/p_{\mathrm{T}2}$ for large-angle radiation ($\Delta R_{23}$ > 1.0)

More…

Angular analysis of the decay B$^+$ $\to$ K$^*$(892)$^+\mu^+\mu^-$ in proton-proton collisions at $\sqrt{s} =$ 8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 04 (2021) 124, 2021.
Inspire Record 1826544 DOI 10.17182/hepdata.99387

Angular distributions of the decay B$^+$$\to$ K$^*$(892)$^+\mu^+\mu^-$ are studied using events collected with the CMS detector in $\sqrt{s} =$ 8 TeV proton-proton collisions at the LHC, corresponding to an integrated luminosity of 20.0 fb$^{-1}$. The forward-backward asymmetry of the muons and the longitudinal polarization of the K$^*$(892)$^+$ meson are determined as a function of the square of the dimuon invariant mass. These are the first results from this exclusive decay mode and are in agreement with a standard model prediction.

1 data table

The measured signal yields, FL, AFB in bins of the dimuon invariant mass squared. The first uncertainty is statistical and the second is systematic.


Search for charged-lepton-flavour violation in $Z$-boson decays with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Nature Phys. 17 (2021) 819 819-825, 2021.
Inspire Record 1821688 DOI 10.17182/hepdata.96390

The ATLAS experiment at the Large Hadron Collider reports a search for charged-lepton-flavour violation in decays of $Z$ bosons into a τ lepton and an electron or muon of opposite charge.

9 data tables

The best-fit expected and observed distributions of the combined NN output in the CRZ$\tau\tau$ for the $\mu\tau$ channel for events with 1-prong $\tau_\text{had-vis}$ candidates. The last bin in each plot includes overflow events.

The best-fit expected and observed distributions of the combined NN output in the CRZ$\tau\tau$ for the $\mu\tau$ channel for events with 3-prong $\tau_\text{had-vis}$ candidates. The last bin in each plot includes overflow events.

The best-fit expected and observed distributions of the combined NN output in the VRSS for the $e\tau$ channel for events with 1-prong $\tau_\text{had-vis}$ candidates. The last bin in each plot includes overflow events.

More…

Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 813 (2021) 136036, 2021.
Inspire Record 1817310 DOI 10.17182/hepdata.93883

Measurements of the second Fourier harmonic coefficient ($v_2$) of the azimuthal distributions of prompt and nonprompt D$^0$ mesons produced in pp and pPb collisions are presented. Nonprompt D$^0$ mesons come from beauty hadron decays. The data samples are collected by the CMS experiment at nucleon-nucleon center-of-mass energies of 13 and 8.16 TeV, respectively. In high multiplicity pp collisions, $v_2$ signals for prompt charm hadrons are reported for the first time, and are found to be comparable to those for light-flavor hadron species over a transverse momentum ($p_\mathrm{T}$) range of 2-6 GeV. Compared at similar event multiplicities, the prompt D$^0$ meson $v_2$ values in pp and pPb collisions are similar in magnitude. The $v_2$ values for open beauty hadrons are extracted for the first time via nonprompt D$^0$ mesons in pPb collisions. For $p_\mathrm{T}$ in the range of 2-5 GeV, the results suggest that $v_2$ for nonprompt D$^0$ mesons are smaller than those for prompt D$^0$ mesons. These new measurements indicate a positive charm hadron $v_2$ in pp collisions and suggest a mass dependence in $v_2$ between charm and beauty hadrons in the pPb system. These results provide insights into the origin of heavy-flavor quark collectivity in small systems.

8 data tables

Results of elliptic flow, corrected for short range correlations, for prompt neutral D mesons, as a function of transverse momenta for $|y_{lab}|< 1$, with $N^{offline}_{trk} \geq 100$ in pp collisions at 13 TeV.

Results of elliptic flow, corrected for short range correlations, for prompt neutral D mesons, as a function of multiplicity for $|y_{lab}|< 1$, with 2$ < p_{T} < $4 GeV in pp collisions at 13 TeV.

Results of elliptic flow, corrected for short range correlations, for prompt neutral D mesons, as a function of multiplicity for $|y_{lab}|< 1$, with 4$ < p_{T} < $6 GeV in pp collisions at 13 TeV.

More…

A measurement of the Higgs boson mass in the diphoton decay channel

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 805 (2020) 135425, 2020.
Inspire Record 1780985 DOI 10.17182/hepdata.93362

A measurement of the mass of the Higgs boson in the diphoton decay channel is presented. This analysis is based on 35.9 fb$^{-1}$ of proton-proton collision data collected during the 2016 LHC running period, with the CMS detector at a center-of-mass energy of 13 TeV. A refined detector calibration and new analysis techniques have been used to improve the precision of this measurement. The Higgs boson mass is measured to be $m_\mathrm{H} =$ 125.78 $\pm$ 0.26 GeV. This is combined with a measurement of $m_\mathrm{H}$ already performed in the H $\to$ ZZ $\to$ 4$\ell$ decay channel using the same data set, giving $m_\mathrm{H} =$ 125.46 $\pm$ 0.16 GeV. This result, when further combined with an earlier measurement of $m_\mathrm{H}$ using data collected in 2011 and 2012 with the CMS detector, gives a value for the Higgs boson mass of $m_\mathrm{H} =$ 125.38 $\pm$ 0.14 GeV. This is currently the most precise measurement of the mass of the Higgs boson.

1 data table

A summary of the mass of the Higgs boson measured in the H to GG and the H to ZZ to 4l decay channel, and for the combination of the two. These measurements have been carried out with the Run 1 and 2016 datasets as well as with them combined.


Measurement of the $\chi_\mathrm{c1}$ and $\chi_\mathrm{c2}$ polarizations in proton-proton collisions at $\sqrt{s} =$ 8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 124 (2020) 162002, 2020.
Inspire Record 1771351 DOI 10.17182/hepdata.92245

The polarizations of promptly produced $\chi_\mathrm{c1}$ and $\chi_\mathrm{c2}$ mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at $\sqrt{s} = $ 8 TeV. The $\chi_\mathrm{c}$ states are reconstructed via their radiative decays $\chi_\mathrm{c}$ $\to$ $\mathrm{J}/\psi\, \gamma$, with the photons being measured through conversions to e$^+$e$^-$, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the $\chi_\mathrm{c2}$ to $\chi_\mathrm{c1}$ yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the $\mathrm{J}/\psi$ $\to$ $\mu^+\mu^-$ decay, in three ranges of $\mathrm{J}/\psi$ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum.

6 data tables

Yield ratios of chi_c2 over chi_c1 mesons as a function of phi (HX) in the J/psi pT range 8-12 GeV

Yield ratios of chi_c2 over chi_c1 mesons as a function of phi (HX) in the J/psi pT range 12-18 GeV

Yield ratios of chi_c2 over chi_c1 mesons as a function of phi (HX) in the J/psi pT range 18-30 GeV

More…

Measurements of triple-differential cross sections for inclusive isolated-photon+jet events in pp collisions at $\sqrt{s} =$ 8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 79 (2019) 969, 2019.
Inspire Record 1744422 DOI 10.17182/hepdata.90847

Measurements are presented of the triple-differential cross section for inclusive isolated-photon+jet events in pp collisions at $\sqrt{s} =$ 8 TeV as a function of photon transverse momentum ($p_\mathrm{T}^\gamma$), photon pseudorapidity ($\eta^\gamma$), and jet pseudorapidity ($\eta^\text{jet}$). The data correspond to an integrated luminosity of 19.7 fb$^{-1}$ that probe a broad range of the available phase space, for $|\eta^\gamma|$ $<$ 1.44 and 1.57 $<$ $|\eta^\gamma|$ $<$ 2.50, $|\eta^\text{jet}|$ $<$ 2.5, 40 $<$ $p_\mathrm{T}^\gamma$ $<$ 1000 GeV, and jet transverse momentum, $p_\mathrm{T}^\text{jet}$, $>$ 25 GeV. The measurements are compared to next-to-leading order perturbative quantum chromodynamics calculations, which reproduce the data within uncertainties.

4 data tables

Measured triple-differential cross section distributions as a function of ${p_{T}^{\gamma}}$ in different bins of |${\eta^{\textrm{jet}}}$| for photons in the $|{\eta^{\gamma}}|$ < 0.8 bin.

Measured triple-differential cross section distributions as a function of ${p_{T}^{\gamma}}$ in different bins of |${\eta^{\textrm{jet}}}$| for photons in the 0.8 < $|{\eta^{\gamma}}|$ < 1.44 bin.

Measured triple-differential cross section distributions as a function of ${p_{T}^{\gamma}}$ in different bins of |${\eta^{\textrm{jet}}}$| for photons in the 1.56 < $|{\eta^{\gamma}}|$ < 2.1 bin.

More…

Observation of nuclear modifications in W$^\pm$ boson production in pPb collisions at $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 800 (2020) 135048, 2020.
Inspire Record 1733223 DOI 10.17182/hepdata.88284

The production of W$^\pm$ bosons is studied in proton-lead (pPb) collisions at a nucleon-nucleon centre-of-mass energy of $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV. Measurements are performed in the W$^\pm$ $\to$ $\mu^\pm\nu_\mu$ channel using a data sample corresponding to an integrated luminosity of 173.4 $\pm$ 8.7 nb$^{-1}$, collected by the CMS Collaboration at the LHC. The number of positively and negatively charged W bosons is determined separately in the muon pseudorapidity region in the laboratory frame $|\eta^\mu_\mathrm{lab}|$ $<$ 2.4 and transverse momentum $p_\mathrm{T}^\mu$ $>$ 25 GeV/$c$. The W$^\pm$ boson differential cross sections, muon charge asymmetry, and the ratios of W$^\pm$ boson yields for the proton-going over the Pb-going beam directions are reported as a function of the muon pseudorapidity in the nucleon-nucleon centre-of-mass frame. The measurements are compared to the predictions from theoretical calculations based on parton distribution functions (PDFs) at next-to-leading-order. The results favour PDF calculations that include nuclear modifications and provide constraints on the nuclear PDF global fits.

7 data tables

Muon charge asymmetry, $(N_{\mu}^{+} - N_{\mu}^{-})/(N_{\mu}^{+} + N_{\mu}^{-})$, as a function of the muon pseudorapidity in the centre-of-mass frame.

Differential production cross sections for $\textrm{pPb} \to W^{+} + X \to \mu^{+} \nu + X$ for positively charged muons of $p_T$ larger than 25 GeV$/c$, in nanobarns, as a function of the muon pseudorapidity in the centre-of-mass frame. The global normalisation uncertainty of 3.5% is listed separately.

Differential production cross sections for $\textrm{pPb} \to W^{-} + X \to \mu^{-} \bar{\nu} + X$ for negatively charged muons of $p_T$ larger than 25 GeV$/c$, in nanobarns, as a function of the muon pseudorapidity in the centre-of-mass frame. The global normalisation uncertainty of 3.5% is listed separately.

More…

Multiparticle correlation studies in pPb collisions at $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.C 101 (2020) 014912, 2020.
Inspire Record 1731568 DOI 10.17182/hepdata.88288

The second- and third-order azimuthal anisotropy Fourier harmonics of charged particles produced in pPb collisions, at $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV, are studied over a wide range of event multiplicities. Multiparticle correlations are used to isolate global properties stemming from the collision overlap geometry. The second-order "elliptic" harmonic moment is obtained with high precision through four-, six-, and eight-particle correlations and, for the first time, the third-order "triangular" harmonic moment is studied using four-particle correlations. A sample of peripheral PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV that covers a similar range of event multiplicities as the pPb results is also analyzed. Model calculations of initial-state fluctuations in pPb and PbPb collisions can be directly compared to the high precision experimental results. This work provides new insight into the fluctuation-driven origin of the $v_3$ coefficients in pPb and PbPb collisions, and into the dominating overall collision geometry in PbPb collisions at the earliest stages of heavy ion interactions.

14 data tables

$v_2\{4\}$ as a function of $N_{trk}^{offline}$ in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

$v_2\{6\}$ as a function of $N_{trk}^{offline}$ in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

$v_2\{8\}$ as a function of $N_{trk}^{offline}$ in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

More…