The measurement of the proton-proton total cross section performed by the CERN-Pisa-Rome-Stony Brook Collaboration at the CERN ISR is discussed in detail. The total interaction rate, the elastic scattering rate in the forward direction, and the machine luminosity were measured simultaneously to obtain three different determinations of the total cross section. Consistent results were found, which made it possible to prove the reliability of the Van der Meer luminosity calibration within +-0.9% and to achieve a precision of +-0.6% in the measurement of the total cross section.
No description provided.
We present results for the differential cross sections of neutrinos and antineutrinos on nucleons in the energy range E = 2−200 GeV, from the BEBC and Gargamelle experiments. The structure functions F 2 , 2 χF 1 and χF 3 have been evaluated as a function of χ and q 2 . Deviations are observed from Bjorken scaling, which are very similar to those found in electron and muon inelastic scattering. For the Callan-Gross ratio, we find 2χF 1 F 2 = 0.80 ± 0.12 and the corresponding value for 〈R〉 = 〈 σ S σ T 〉 = 0.15 ± 0.10 . Our results are consistent with the Gross-Llewellyn-Smith sum rule; we measure ⩾2.5 ± 0.5 valence quarks per nucleon. Quark and antiquark distributions are given. The Nachtmann moments of F 2 and χF 3 are quantitatively consistent with the predictions from QCD. The value of the strong interaction parameter is λ = 0.74 ± 0.05 GeV without corrections, and 0.66 ± 0.05 GeV including α S 2 corrections. The moments of the gluon distribution are found to be positive and indicate an χ distribution of gluons which is comparable with that of the valence quarks.
No description provided.
No description provided.
We have extended our survey of the reaction γ+p→p+e++e− by collecting 20 000 additional e+e− pairs in the invariant-mass region 900<m<1500 MeV. The measured interference pattern shows two enhancements at mass values of 1097 and 1266 MeV. The parameters of those structure, when interpreted as vector mesons in the VDM framework, are given.
No description provided.
We report on inclusive hadron production in e+e− annihilation at 〈s〉=53 GeV2, using a small solid-angle magnetic spectrometer with good particle identification at 90° to the beams at SPEAR II. The cross sections of π± and K± when compared with data at s=23 GeV2 exhibit scaling in (sβ)dσdx with x=2Es12. The invariant cross section depends on the momentum as p−4.
No description provided.
No description provided.
No description provided.
Inclusive and semi-inclusive distributions of γ's and π 0 's in the reactions K + p → γ + X and K + p → π 0 + X at 32 GeV/ c are presented and discussed. When compared to the inclusive π − production, the π 0 cross section is found to be significantly higher in low | x | and p T regions. The data are compared with other experiments and quark fusion model predictions.
No description provided.
No description provided.
ESTIMATED FROM GAMMA AND 2GAMMA SPECTRA.
Results are presented of polarization parameter measurements for the reaction π − p→ π 0 n at 22 momenta between 617 and 2267 MeV/ c . These results are generally in agreement with those of previous measurements and in qualitative agreement with predictions of phase-shift analyses. Together with the recently published differential cross-section measurements, they provide a comprehensive set of data for this reaction in the resonance region.
No description provided.
No description provided.
No description provided.
We report on experimental results on deuteron-deuteron elastic scattering at a centre-of-mass energy of √ s = 53 GeV . The data were obtained using the Split Field Magnet detector at the CERN intersecting Storage Rings. The t -dependence of the elastic cross section is measured up to − = 1.5 GeV 2 . We observed a narrow interference minimum in the differential cross section at − = 0.18 GeV 2 . The inclusion of inelastic intermeduate states in the multiple scattering Glauber theory is essential in the description of the data over the entire t -range where discrepancies of up to 25% are observed with the basic theory.
No description provided.
No description provided.
We report on experimental results on proton-deuteron elastic scattering at a centre-of-mass energy of √ s = 63 GeV . The data were obtained using the Split Field Magnet detector at the CERN Intersecting Storage Rings. The t -dependence of the elastic differential cross section, measured up to − t = 2.0 GeV 2 , is compared with the prediction of an extended Glauber theory including contributions from inelastic intermediate states. Discrepancies of up to 30% with the basic theory are observed in the interference region. The inelastic contributions are essential for the detailed description of the data both in the single- and double-scattering regions.
No description provided.
No description provided.
The total and differential cross sections of the reactions K − p → π 0 Λ (1520), ηΛ(1520) and η′ Λ(1520) have been measured. Prominent forward peaks are onserved in all three reactions. The first reaction shows also a backward peak. The spin density matrix elements of the Λ(1520) in this reaction are determined. For forward production the results show a remarkable alignment of the Λ(1520) corresponding to an M2 transition in the model of Stodolsky-Sakurai for 3 2 − baryon production.
TOTAL (FORWARD AND BACKWARD) CROSS SECTIONS. THE ERRORS ARE MAINLY SYSTEMATIC.
-TP = (-T - 0.04 GEV**2). MAX(-T) - MIN(-T) = 5.75 GEV**2.
-UP = (-U - 0.20 GEV**2).
Measurements are presented of the inclusive π 0 production cross section, in the transverse momentum range 2.3 ⪅ p T ⪅4.5 GeV/c, for dd and dp interactions at total c.m. energies of √ s = 52.7 GeV and √ s = 63.2 GeV and for pp interactions at √ s = 52.7 GeV. The produced π 0 's are detected by identifying both protons from the decay π 0 → γγ . As in pp interactions, the data can be adequately described by a p T −n ƒ(x T ) dependence with n ≌ 8 . The data are approximately consistent with the expectations of free nucleon scattering. No significant differenceare observed in either the charged or the neutral particle distributions associated with π 0 , for dd, dp and pp interactions.
GLOBAL NORMALIZATION UNCERTAINTY = 12 PCT. RELATIVE NORMALIZATION UNCERTAINTY = 5 PCT.
GLOBAL NORMALIZATION UNCERTAINTY = 10 PCT. RELATIVE NORMALIZATION UNCERTAINTY = 6 PCT.
GLOBAL NORMALIZATION UNCERTAINTY = 15 PCT. RELATIVE NORMALIZATION UNCERTAINTY = 7 PCT.