The reactions e + e − →γγγ and e + e − →γγγγ have been studied at center-of-mass energies between 35 and 46.8 GeV with an integrated luninosity of about 130 pb −1 accumulated with the CELLO detector at PETRA. The measurements are compared to QED calculations up to third and fourth orders of perturbation theory. Excellent agreement is observed.
No description provided.
The reactions e + e − → μ + μ − and τ + τ − were measured at s =52 GeV and 55 GeV by using the TOPAZ detector at TRISTAN. For the combined data, the observed charge asymmetry is −0.29±0.13 and the total cross section is 27.9±3.0 (stat.)±0.8 (syst.) pb for μ + μ − production, and those for τ + τ − production are −0.20±0.14 and 35.7±4.3 (stat.)±2.4 (syst.)pb, respectively. These values are consistent with predictions by the standard model of electroweak interactions.
.
.
.
Differential cross sections for the processes e + e − → e + e − (Bhabha scattering) and e + e − → γγ have been measured with the TOPAZ detector at s =52 GeV . The results agree with the predictions of quantum electrodynamics (QED). The lower limits for the QED cut-off parameters have been obtained to be Λ + ⩾115 GeV and Λ − ⩾236 GeV for Bhabha scattering, and Λ + ⩾94 GeV and Λ − ⩾59 GeV for the reaction e + e − → γγ .
Statistical errors only.
Statistical errors only.
Ratio of experimental data to prediction for lowest order QED. Statistical errors only.
Cross sections are measured for 16 O collisions with A1 and Pb. Dependences on beam momentum and atomic number are compared with data obtained at much lower beam momenta.
MODEL DEPENDENT ESTIMATION.
No description provided.
No description provided.
Results of fitting the differential distributions in x F and p T 2 of D mesons produced in 400 GeV/ c p-p interactions to the form d 2 σ d x F d p T 2 ∝(1−x F ) n exp [−(p T 2 /〈p T 2 〉)] are discussed. The D + distribution is found to be relatively hard [ n =3.1±0.8〈 P t 2 〉=1.32±0.27 (GeV/ c ) 2 ] and the D̄ 0 distribution relatively soft [ n =8.1±1.9,〈 p T 2 〉=0.62±0.14 (GeV/ c ) 2 ] compared to the average for all D's [ n =4.9±0.5,〈 p T 2 〉=0.99±0.10 (GeV/ c ) 2 ]. It is suggested that these distributions could reflect contribution of leading di-quarks in pp collisions. Comparison is made with evidence for leading quarks in charm production in 360 GeV/ cπ − p interactions.
The invariant (C=INV) and non-invariant (C=NON-INV) distributions are fitted to (1-XL)**POWER. Pt distribution is fitted to EXP(-PT**2/SLOPE).
A sample of 29 gu + υ + 35 υ − υ − coming from B B decay have been observed in π -U interactions at 320 GeV energy. The experimental distributions and the total cross section are found to be in good agreement with QCD predictions. The effect of B 0 B 0 mixing is discussed.
BEAUTY INCLUSIVE SPECTRA WAS ASSUMED MN FORM : E*D(SIG)/D(X)/D(PT**2) = EXP(-0.9*PT**2)*(1-ABS(X))**A. THE BEST FIT FOR A IS A = 2.5.
No description provided.
The azimuthal dependence of the flow of hadronic energy about the momentum-transfer direction in charged-current deep-inelastic neutrino-nucleon scattering is used to study gluon emission and the transverse momentum 〈kT〉 of partons confined inside the nucleon. A 7-standard-deviation azimuthal asymmetry is observed indicating an average 〈kT〉=0.303±0.041 GeV/c.
No description provided.
No description provided.
No description provided.
Vector mesons produced in the reaction e + e − →V+X at √ s =29 GeV were isolated by observing D ∗ mesons through the D ∗+ → D 0 π + decay. The D 0 decay modes used are D 0 →K3 π , K π , K π , and K π ( π 0 ). The data, which correspond to an integrated luminosity of 300 pb −1 , were collected by the High Resolution Spectrometer at PEP. Spin density matrix elements for the D ∗ meson are measured as a function of the energy sharing variable Z D ∗ . There is no evidence for alignment of D ∗ mesons produced in e + e − annihilation at our energy.
Spin density matrix for D0 --> K PI decay mode.
Spin density matrix for D0 --> K 3PI decay mode.
Spin density matrix for D0 --> K PI (PI0) decay mode.
Data from e + e − annihilations at 29 GeV have been used to measure the production cross section and fragmentation function of η mesons. The signal is observed in the η → γγ decay channel. The fragmentation for p η >1.5 GeV/ c agrees well with the prediction of the Lund model, whereas the prediction of the Webber model lies above the data. The mean multiplicity is measured to be 〈 n η 〉=0.58±0.10 η mesons per hadronic event, of which 0.51 represents the direct production of η and η ′ mesons in the fragmentation chain.
Statistical errors only.
Extrapolated to full z range using LUND model.
A search has also been made for a fourth generation, charge 1/3 quark (b'). Assuming that theb' mass is smaller than that of the top quark and that it can-not be produced inW decays, the mass limits, using the above procedures, are respectivelymb'>32 GeV/c2 andmb'>44 GeV/c2, both at 95% confidence level.