The interference structure function xG 3 ( x ) has been measured for the first time scattering positive and negative muons of opposite helicity off a carbon target. The x dependence observed for Q 2 between 40 and 180 (GeV/c 2 ) is in good agreement with predictions of the quark-parton model. The measured ratio 2( a u Q u + a d Q d )/( Q u 2 + Q d 2 = 1.87 ± 0.25 (stat.) ± 0.24 (syst.) is consistent with the hypothesis of fractional quark charges and determines the sign of Q u − Q d to be positive.
No description provided.
No description provided.
No description provided.
Experimental results on the study of quasielastic reactionsvμn→μ−p and\(\bar v_u p \to \mu ^ +n\) in the energy range 3–30 GeV are presented in this paper. Spark chamber detector with Al filters has been exposed to the wide-band neutrino and antineutrino beams at Serpukhov. Neutrino and antineutrino data have been used to reconstruct the behaviour of axial-vector form-factorFA(Q2). We measured the total cross-sections as a function of energy. The parameterMA=(1.00±0.04) GeV/c2 has been determined under the assumption of the dipole parametrization and CVC hypothesis. Upper limit for the second class currents was estimated.
Statistical errors only.
Statistical errors only.
The production and properties of high transverse momentum hadron jets have been measured in the UA2 experiment at the CERN\(\bar pp\) Collider\((\sqrt s= 540 GEV)\) using a highly segmented total absorption calorimeter. The characteristics of a sample of two-jet events with invariant mass up to 200 GeV/c2 are discussed, including measurements of their fragmentation properties, angular and rapidity distributions, and the properties of the additional energy clusters accompanying the two-jet system. Cross sections for inclusive jet production in the jet transverse momentum range between 30 and 100 GeV/c and for the two-jet invariant mass distribution in the mass range from 60–200 GeV/c2 are reported.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
The invariant cross section of the reaction of deuteron stripping on carbon target has been measured at a deuteron momentum of 8.9 GeV/c. The cross section is obtained at a zero detection angle of the stripping proton: E/p2xd2σ/dpdΩ=(281+-9)xbxGeV/srx(GeV/c)3. This value is consistent with the one calculated in the framework of the Bertocci-Treleani model of deuteron fragmentation. When the method of Nissen-Meyer is used for orthogonalization of the wave functions of primary deuteron and the (np) system, resulting from its disintegration, a similar calculation gives the result, which is 1.4 times larger than the measured value. Distribution in the cosine of angle of proton yield at the fixed proton momentum p turned out to be near to isotropy one and distribution in p at the fixed cos theta has the maximum at p=50 MeV/c
.
.
.
None
Axis error includes +- 6/6 contribution (THE NUMBER OF NEUTRAL STARS WAS CORRECTED FOR ACCIDENTAL STARS WITHOUT FORMER INTERACTIONS AND FOR STARS PRODUCED BY KL MESONS, THE LAMBDA AND KS PARTICLES YIELD BEING NEGLECTEDTHE MOMENTUM OF NEUTRON IN THE STAR WAS TAKEN OF ONE AND A HALF OF TOTAL MOMENTUM OF CHARGED PARTICLES IN THE STAR).
No description provided.
None
No description provided.
No description provided.
Transverse momentum distributions of pions, kaons and protons have been measured around 90° in the UA2 detector at the SPS p p collider, at a CM energy of 540 GeV. All the cross sections have increased by more than a factor of 2 over those measured at ISR energies and exhibit a flatter behaviour with respect to transverse momentum.
No description provided.
A description is given of the experimental techniques and investigation results of the parameters Σ , T , P for the γ p→p π 0 reaction using linear polarized photons and a polarized proton target. The measurements have been made in the photon energy range 280–450 MeV at pion c.m. angles between 60° and 135°. The new experimental data are used in an energy-independent channel multipole analysis without the Watson theorem.
No description provided.
No description provided.
No description provided.