Photon proton cross sections for elastic light vector meson production, σelνp, inelastic diffractive production, σndνp, non-diffractive production, σdνp, as well as the total cross section, σtotνp, have been measured at an average υp center of mass energy of 180 GeV with the ZEUS detector at HERA. The resulting values are σelνp = 18 ± 7 μb, σdνp = 33 ± 8 μb, σndνp = 91 ± 11 μb, and σtotνp 143 ± 17 μb, where the errors include statistical and systematic errors added in quadrature.
No description provided.
Errors contain both statistics and systematics.
Cross section for the elastic (ie. gamma p --> VM p) cross section.. Errors contain both statistics and systematics.
A leading charm meson is one with longitudinal momentum fraction, xF>0, whose light quark (or antiquark) is of the same type as one of the quarks in the beam particles. We report on the production asymmetry, A=[σ(leading-σ(nonleading)]/[σ(leading)+σ(nonleading)] as a function of xF. The data consist of 1500 fully reconstructed D± and D*± decays in Fermilab experiment E 769. We find a significant asymmetry for the production of charm quarks is not expected in perturbative quantum chromodynamics.
Asymmetry as function of XL.
Asymmetry as function of PT**2.
This paper presents our first measurement of the F 2 structure function in neutral-current, deep inelastic scattering using the ZEUS detector at HERA, the ep colliding beam facility at DESY. The data correspond to an integrated luminosity of 24.7 nb −1 . Results are presented for data in range of Q 2 from 10 GeV 2 to 4700 GeV 2 and Bjorken x down to 3.0 × 10 −4 . The F 2 structure function increases rapidly as x decreases.
No description provided.
No description provided.
No description provided.
A precise measurement of p̄p elastic scattering in the Coulomb-strong interaction interference region was performed at the CERN Sp̄pS Collider at a centre-of-mass energy of 541 GeV. The ratio of the real to the imaginary part of the forward elastic scattering amplitude was found to be ρ = 0.135 ± 0.015. The slope of the exponential fall off of the strong interaction part was also measured to be b = 15.5 ± 0.1 GeV −2 .
No description provided.
Real part of amplitude extracted using a more precise UA4 measurement. (1 +RE(AMP)/IM(AMP)**2)SIG(TOT) = 63.5 +- 1.5 MB (Bozzo et al. PL 147B(1984)392).
This paper reports a search for excited electrons at the HERA electron-proton collider. In a sample corresponding to an integrated luminosity of 26 nb − , no evidence was found for any resonant state decaying into e − γ , ν W − or e − Z 0 . Limits on the coupling strength of an excited electron have been determined for masses between 45 and 225 GeV. This study also reports the observation of the wide-angle e γ Compton scattering process.
No description provided.
The decays η → γγ and η ′ → ηπ + π − have been observed in hadronic decays of the Z produced at LEP. The fragmentation functions of both the η and η ′ have been measured. The measured multiplicities for x > 0.1 are 0.298±0.023±0.021 and 0.068±0.016 for η and η ′ respectively. While the fragmentation function for the η is fairly well described by the JETSET Monte Carlo, it is found that the production rate of the η ′ is a factor of four less than the corresponding prediction.
No description provided.
Additional 7 pct systematic error.
Additional 23 pct systematic error.
Distributions are presented of event shape variables, jet roduction rates and charged particle momenta obtained from 53 000 hadronicZ decays. They are compared to the predictions of the QCD+hadronization models JETSET, ARIADNE and HERWIG, and are used to optimize several model parameters. The JETSET and ARIADNE coherent parton shower (PS) models with running αs and string fragmentation yield the best description of the data. The HERWIG parton shower model with cluster fragmentation fits the data less well. The data are in better agreement with JETSET PS than with JETSETO(αS2) matrix elements (ME) even when the renormalization scale is optimized.
Sphericity distribution.
Sphericity distribution.
Aplanarity distribution.
None
Three different methods are used for extraction Alphas value (see text for details). Systematical errors with C=HADR and C=THEOR are due to hadronization correction and theoretical uncertainties.
None
NC, CF, and TF are the color factors for SU(N) group. For SU(3) they are equal to: NC = 3, CF = 4/3, and TF = 1/2.
We have measured production cross-sections of the new neutron-rich isotopes58Ti,61V,63Cr,66Mn,69Fe,71Co and neighbouring isotopes that have been identified as projectile fragments from reactions between a 500 MeV/u86Kr beam and a beryllium target. The isotope identification was performed with the zero-degree magnetic spectrometer FRS at GSI, using in addition time-of-flight and energy-loss measurements. The experimental production cross-sections for the new nuclides and neighbouring isotopes are compared with an empirical parametrization. The resulting prospects for reaching even more neutron-rich isotopes, such as the doubly-magic nuclide78Ni, are discussed.
No description provided.