We have measured the Z-boson production differential cross section as a function of transverse momentum using Z→ee and Z→μμ decays in p¯p collision at √s =1.8 TeV with the Collider Detector at Fermilab. Comparison with standard-model predictions shows good agreement over the range 0<pT<160 GeV/c available from this data sample.
Errors are systematic and statistical combined, and are correlated bin to bin due to the correction for resolution smearing.
An analysis of W- and Z-boson production using data from the Collider Detector at Fermilab at √s =1.8 TeV yields σ(W→ev)/σ(Z→ee)=10.2±0.8(stat)±0.4(syst). The width of the W boson, Γ(W), and a limit on the top-quark mass independent of decay mode are extracted from this measurement.
No description provided.
We report the first observation of the associated production of a W boson and a Z boson. This result is based on 1.1 fb-1 of integrated luminosity from ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We observe 16 WZ candidates passing our event selection with an expected background of 2.7 +/- 0.4 events. A fit to the missing transverse energy distribution indicates an excess of events compared to the background expectation corresponding to a significance equivalent to six standard deviations. The measured cross section is sigma(ppbar -> WZ) = 5.0^{+1.8}_{-1.6} pb, consistent with the standard model expectation.
Measured cross section.
We have observed over 102 events of the type W→τν followed by τ→ hadrons, where the taus are identified by their decay into one or three charged particles. We measure the cross section times branching ratio for pp¯→W→τν and compare it to the value for W→eν to directly measure the ratio of weak coupling constants gτ/ge. We find gτ/ge=0.97±0.07, consistent with lepton universality.
Results from the missing ET trigger.
Results from the tau trigger.
Results from the combined ET trigger.
An analysis of the forward-backward asymmetry in Z0 decays using data from the Collider Detector at Fermilab at √s =1.8 TeV yields AFB=[5.2±5.9(stat)±0.4(syst)]% and sin2θ¯W =0.228−0.015+0.017(stat)±0.002(syst).
Asymmetry after background and QCD corrections.
SIN2TW derived from asymmetry measurement fully corrected for background and radiative corrections.
We have determined mW=79.91±0.39 GeV/c2 from an analysis of W→eν and W→μν data from the Collider Detector at Fermilab in p¯p collisions at a c.m. energy of √s =1.8 TeV. This result, together with the world-average Z mass, determines the weak mixing angle to be sin2θW=0.232±0.008. Bounds on the top-quark mass are discussed.
Combining W mass result with world-average Z mass (91.191 GEV).
The charge asymmetry of leptons from W-boson decay has been measured using p¯p data from the Collider Detector at Fermilab at √s =1.8 TeV. The observed asymmetry is well described by most of the available parton distributions.
Electrons in the central region.
Muons in the central region.
Plug electrons.
The B0 B¯ 0 average mixing parameter χ has been extracted from eμ and ee events produced in pp¯ collisions at √s =1.8 TeV. In a sample of 900 eμ events, the like-sign to opposite-sign charge ratio R is measured to be 0.556±0.048(stat)−0.042+0.035(syst). In the absence of mixing, the expected value of R would be 0.23±0.06. The corresponding number for 212 ee events is 0.573±0.116(stat)±0.047(syst) with an expected nonmixing value of 0.24±0.07. The observed excess in R leads to a combined determination of χ=0.176±0.031(stat+syst) ±0.032 (model), where the last uncertainty is due to Monte Carlo modeling.
No description provided.
No description provided.
We present a measurement of the inclusive jet cross section in p¯p collisions at √s =1.8 TeV at the Fermilab Tevatron using the Collider Detector at Fermilab. Good agreement is seen with the predictions of recent next-to-leading-order [O(αs3)] QCD predictions. The dependence of the cross section on clustering cone size is reported for the first time. An improved limit on Λc, a term characterizing possible quark substructure, is set at 1.4 TeV (95% C.L.).
Data are averaged over the pseudorapidity interval 0.1 to 0.7.
We present measurements of the bottom-quark production cross sections in pp¯ collisions at √s =1.8 TeV. From the inclusive electron production rate, we have determined the bottom-quark production cross sections to be 1010±270, 168±43, 37±10 nb for the rapidity range of ‖yb‖<1.0 and the transverse momentum ranges of pTb>15, 23, 32 GeV/c, respectively. In addition, from the associated electron-D0 production rate, we have determined the bottom-quark cross section to be 364±80(stat)±95(syst) nb for ‖yb‖<1.0 and pTb>19 GeV/c.
From the inclusive electron production rate.
From the associated electron-D0 production rate.