Experimental Proof of the Existence of the A1 Meson

The ACCMOR collaboration Daum, C. ; Hertzberger, L. ; Hoogland, W. ; et al.
Phys.Lett.B 89 (1980) 281-284, 1980.
Inspire Record 143044 DOI 10.17182/hepdata.27272

In partial wave analyses of the ( π − π − π + ) system, substantial shape changes of the 1 + S ( ϱπ ) intensity as a function of t , and relative phase changes of ≈ 90°, provide compelling evidence for a resonant A 1 of mass ≈ 1280 MeV and width ≈ 300 MeV.

1 data table

No description provided.


3 $\pi$ Resonances in 2- Partial Waves

The ACCMOR collaboration Daum, C. ; Hertzberger, L. ; Hoogland, W. ; et al.
Phys.Lett.B 89 (1980) 285-289, 1980.
Inspire Record 143045 DOI 10.17182/hepdata.27275

The J PC = 2 −+ partial wave intensities and their large phase changes prove the resonant nature of the A 3 meson (mass ≈ 1670 MeV, width ≈ 210 MeV). The decay modes are f 0 π , ϱ 0 π , and ϵ 0 π . Evidence is found for a further 2 − enhancement.

1 data table

No description provided.


HIGH STATISTICS INCLUSIVE phi MESON PRODUCTION AT SPS ENERGIES

The ACCMOR collaboration Dijkstra, H. ; Bailey, R. ; Belau, E. ; et al.
Z.Phys.C 31 (1986) 375-389, 1986.
Inspire Record 18260 DOI 10.17182/hepdata.15894

Inclusive ϕ meson production has been measured for 100 GeV/c and 200 GeV/c incident π−,\(\bar p\) andK−, and for 120 GeV/c and 200 GeV/c incident π+,p andK+, using a Be target. A total of 630,000 ϕ mesons has been recorded in the kinematic range 0<xF<0.4. Presented are the differential cross sectionsdσ/dxF anddσ/dpT2. The longitudinal momentum distributions show that the strange valence quarks of the incidentK mesons play an important role in ϕ meson production, even at smallxF. The decay angular distribution of the ϕ meson is evaluated in the Gottfried-Jackson frame and is expressed in the elements of the density matrix. There is a small but significant cos2θGJ dependence for smallpT, which decreases for increasingpT.

34 data tables

Note that the data is plotted in fig. 5 a factor 5 too large. The numbers here are correct.

Note that the data is plotted in fig 5 a factor of 5 too large. The numbers here are correct.

Note that the data is plotted in fig. 5 a factor of 5 too large. CT = The numbers here are correct.

More…

Diffractive Production of 3 $\pi$ States at 63-{GeV} and 94-{GeV}

The ACCMOR collaboration Daum, C. ; Hertzberger, L. ; Hoogland, W. ; et al.
Nucl.Phys.B 182 (1981) 269-336, 1981.
Inspire Record 156369 DOI 10.17182/hepdata.34314

Diffractive production of the 3 π system has been studied at 63 and 94 GeV using a two magnet spectrometer with high, uniform acceptance. The total number of events used in the analysis is ∼600 000. The A 2 meson is shown to be diffractively produced. The existence of a resonant component in both the 1 + and 2 − enhancements is established and resonance parameters for the corresponding A 1 and A 3 mesons are given. There are several indications in the data of states which would correspond to radial excitations in the quark model.

4 data tables

SEE C. DAUM ET AL., PL 89B, 276 (1980) (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+486> RED = 486 </a>), AND THE RECORD (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+420> RED = 420 </a>) OF THE GENEVA CONFERENCE PREPRINT, B. ALPER ET AL. (1979).

SEE C. DAUM ET AL., PL 89B, 281 (1980) (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+487> RED = 487 </a>), AND THE RECORD (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+419> RED = 419 </a>) OF THE GENEVA CONFERENCE PREPRINT, G. THOMPSON ET AL. (1979).

SEE C. DAUM ET AL., PL 89B, 285 (1980) (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+488> RED = 488 </a>), AND THE RECORD (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+421> RED = 421 </a>) OF THE GENEVA CONFERENCE PREPRINT, B. ALPER ET AL. (1979).

More…

RESULTS ON LAMBDA(c)+, D(s)+, D0 AND D+ PRODUCTION PROPERTIES IN 230-GeV/c pi- Cu INTERACTIONS FROM THE NA32 EXPERIMENT

The ACCMOR collaboration Barlag, S. ; Becker, H. ; Bohringer, T. ; et al.
CERN-EP/88-104, 1988.
Inspire Record 264995 DOI 10.17182/hepdata.12879

None

33 data tables

AUTHORS FIT D2(SIG)/D(XL)/D(PT**2) BY (1-XL)**POWER*EXP(-SLOPE*PT**2).

AUTHORS FIT D2(SIG)/D(XL)/D(PT**2) BY (1-XL)**POWER*EXP(-SLOPE*PT**2).

AUTHORS FIT D2(SIG)/D(XL)/D(PT**2) BY (1-XL)**POWER*EXP(-SLOPE*PT**2).

More…

A Measurement of $\bar{p} p$ and $p p$ Elastic Scattering at {ISR} Energies

The AMES-BOLOGNA-CERN-DORTMUND-HEIDELBERG-WARSAW collaboration Breakstone, A. ; Campanini, R. ; Crawley, H.B. ; et al.
Nucl.Phys.B 248 (1984) 253-260, 1984.
Inspire Record 204422 DOI 10.17182/hepdata.33837

We have measured the differential cross section for pp and p̄p elastic scattering at √ s = 31, 53 and 62 GeV in the interval 0.05 < | t | < 0.85 GeV 2 at the CERN ISR using the Split Field Magnet detector. At 53 and 62 GeV, for 0.17 < | t | < 0.85 GeV 2 both pp and p̄p data show simple exponential behaviour in t ; at √ s = 31 GeV the data for 0.05 < | t | < 0.85 GeV 2 are consistent with a change in slope near | t | = 0.15 GeV 2 .

5 data tables

ERRORS CONTAIN BOTH STATISTICAL AND T-DEPENDENT SYSYEMATIC ERRORS.

No description provided.

LOCAL SLOPE PARAMETERS BASED ON QUADRATIC EXPONENTIAL FIT.

More…

Measurement of the total cross section from elastic scattering in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 761 (2016) 158-178, 2016.
Inspire Record 1477585 DOI 10.17182/hepdata.73997

A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.

6 data tables

The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The total elastic cross section and the observed elastic cross section within the fiducial volume.

More…

Measurement of the total cross section from elastic scattering in $pp$ collisions at $\sqrt{s}=7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Nucl.Phys.B 889 (2014) 486-548, 2014.
Inspire Record 1312171 DOI 10.17182/hepdata.68910

A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=7$ TeV is presented. In a special run with high-$\beta^{\star}$ beam optics, an integrated luminosity of 80 $\mu$b$^{-1}$ was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $|t|$ range from 0.01 GeV$^2$ to 0.1 GeV$^2$ to extrapolate to $|t|\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $$\sigma_{\mathrm{tot}}(pp\rightarrow X) = 95.35 \; \pm 0.38 \; ({\mbox{stat.}}) \pm 1.25 \; ({\mbox{exp.}}) \pm 0.37 \; (\mbox{extr.}) \; \mbox{mb},$$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to $|t|\rightarrow 0$. In addition, the slope of the elastic cross section at small $|t|$ is determined to be $B = 19.73 \pm 0.14 \; ({\mbox{stat.}}) \pm 0.26 \; ({\mbox{syst.}}) \; \mbox{GeV}^{-2}$.

6 data tables

The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The Optical Point dsigma/(elastic)/dt(t-->0), the total elastic cross section and the observed elastic cross section within the fiducial volume. The first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

More…

Version 2
Fiducial, total and differential cross-section measurements of $t$-channel single top-quark production in $pp$ collisions at 8 TeV using data collected by the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 531, 2017.
Inspire Record 1512776 DOI 10.17182/hepdata.82544

Detailed measurements of $t$-channel single top-quark production are presented. They use 20.2 fb$^{-1}$ of data collected by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of 8 TeV at the LHC. Total, fiducial and differential cross-sections are measured for both top-quark and top-antiquark production. The fiducial cross-section is measured with a precision of 5.8 % (top quark) and 7.8 % (top antiquark), respectively. The total cross-sections are measured to be $\sigma_{\mathrm{tot}}(tq) = 56.7^{+4.3}_{-3.8}\;$pb for top-quark production and $\sigma_{\mathrm{tot}}(\bar{t}q) = 32.9^{+3.0}_{-2.7}\;$pb for top-antiquark production, in agreement with the Standard Model prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be $R_t=1.72 \pm 0.09$, with an improved relative precision of 4.9 % since several systematic uncertainties cancel in the ratio. The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the $t$-channel scattering are measured at particle level. All measurements are compared to various Monte Carlo predictions as well as to fixed-order QCD calculations where available.

108 data tables

Predicted and observed event yields for the signal region (SR). The multijet background prediction is obtained from a binned maximum-likelihood fit to the $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution. All the other predictions are derived using theoretical cross-sections, given for the backgrounds in Sect. 6 and for the signal in Sect. 1. The quoted uncertainties are in the predicted cross-sections or in the number of multijet events, in case of the multijet process.

Predicted and observed event yields for the signal region (SR). The multijet background prediction is obtained from a binned maximum-likelihood fit to the $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution. All the other predictions are derived using theoretical cross-sections, given for the backgrounds in Sect. 6 and for the signal in Sect. 1. The quoted uncertainties are in the predicted cross-sections or in the number of multijet events, in case of the multijet process.

Definition of the fiducial phase space.

More…

MEASUREMENTS OF D (SIGMA) DE (T) IN COLLISIONS OF LIGHT NUCLEI AT S(NN)**(1/2) = 31.5-GEV

The AXIAL FIELD SPECTROMETER collaboration Akesson, T. ; Albrow, M.G. ; Almehed, S. ; et al.
Phys.Lett.B 231 (1989) 359-364, 1989.
Inspire Record 287781 DOI 10.17182/hepdata.29771

Calorimeter measurements of dσ de t for pp, dd, pα , and αα collisions at S nn =31.5 GeV are presented for the pseudorapidity interval | η cm | ⩽ 0.7, extending over eight decades to E t ⩾ 30 GeV. The data are compared with models that predict nuclear cross sections directly from pp data, under the assumption of independent nucleon scatters.

1 data table

The distributions are fitted D(SIG)/D(ET)=CONST*ET**POWER*EXP(-SLOPE*ET).