This experiment was performed with the SLD detector at the Stanford Linear Accelerator Center. Only charged tracks measured in the central drift chamber were used for the measurement of the jet production rates. The value of the strong coupling $\alpha_s (M_{Z^0})$ is determined from the production rates of jets in hadronic $Z^0$ decays in $e^+e^-$ annihilations. The relative jet rates are obtained using the JADE-type algorithms. The results are compared with the jet rates obtained from a new jet algorithm proposed by N. Brown et al. called the "Durham" algorithm. The data can be well described by $\mathcal{O}(\alpha^2_s)$ QCD calculations and by QCD shower model calculations. A fit of the theoretical predictions to the data taken with the SLD yields a value$\alpha_s(M_{Z^0})$ = $0.120 \pm 0.002(stat.) \pm 0.003(exp.)^{+0.011}_{-0.009}(theor.)$ The error is dominated by the theoretical uncertainties. The measurement is compared with results from other experiments and it is shown that the value obtained for $\alpha_s$ agrees well with these results and furthermore supports the evidence for the running of the strong coupling, consistent with the non-Abelian nature of QCD. The Stanford Linear Collider (SLC) can deliver partially longitudinally polarized electrons to the interaction point. Jet production rates and values for a, are calculated both for right-handed and left-handed initial state electrons. All results are consistent with the unpolarized result, as predicted by the Standard Model.
Jet production rates using the JADE recombination scheme.
Jet production rates using the DURHAM recombination scheme.
Jet production rates using the E recombination scheme.
Using data from the TPC/Two-Gamma experiment at the SLAC e+e− storage ring PEP, a C=+1 resonance has been observed in the π+π−π0γ final state resulting from the fusion of one nearly real and one quite virtual photon. The actual decay channel is probably π+π−π0π0, where one final-state photon is not detected, and the mass of the fully reconstructed state would be approximately 1525 MeV. A four-pion decay mode in turn implies that the resonance has even isospin. The nonobservation of this R(1525) when both initial-state photons are nearly real suggests a spin-1 assignment. Since the large measured value of the product of the branching ratio into π+π−π0π0 and the γγ coupling makes it unlikely that this state is the mostly s¯s f1(1510), its interpretation may lie outside of conventional meson spectroscopy. There is a second, less-significant enhancement observed in the same reaction at a four-pion mass centered around 2020 MeV.
No description provided.
Coupling parameter times the effective form factor.
The first prompt photon measurement from the CDF experiment at the Fermilab pp¯ Collider is presented. Two independent methods are used to measure the cross section: one for high transverse momentum (PT) and one for lower PT. Comparisons to various theoretical calculations are shown. The cross section agrees qualitatively with QCD calculations but has a steeper slope at low PT.
Cross section using profile method and an isolation cut of 2 GeV in a cone around the photon. There is an additional 27 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.
Cross section using conversion method and an isolation cut of 2 GeV in a cone around the photon. There is an additional +32,-46 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.
Cross section using profile method and an isolation cut of 15 pct of the photon PT in a cone around the photon. There is an additional 29 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.
The degree of excitation of the emulsion target nuclei due to nuclear interactions of oxygen and sulfur projectiles at 200 GeV/nucleon incident energy has been investigated. Using the plausible assumption that the numberNb of slow particles emitted from the struck target nucleus can be interpreted as a measure of the temperatureT of the residual nucleus, we have found that there exists a critical temperatureTc of the excited target nucleus. For Ag and Br target nuclei this temperature corresponds to <Nb>≌12 and it is attained when the impact parameters are less than about 4 fm.
No description provided.
No description provided.
Final results of the measurement of the analysing power A On of the p p → n n reaction are presented. Eight measurements in the range 546–1287 MeV/ c incoming p momentum have been performed over the full angular range using a solid polarized proton target and the Low Energy Antiproton Ring (LEAR) at CERN antiproton extracted beams.
No description provided.
No description provided.
No description provided.
The hadronic lineshape of the Z has been analyzed for evidence of signals of new, narrow vector resonances in the Z-mass range. The production rate of such resonances would be enhanced due to mixing with the Z. No evidence for new states is found, and it is thus possible to exclude, at the 95% confidence level, a quarkonium state in the mass range from 87.7 to 94.7 GeV.
Statistical errors only.
We present results on the cross-section ratio for inelastic muon scattering on neutrons and protons as a function of Bjorken chi;. The data extend to χ values two orders of magnitude smaller than in previous measurements, down to 2×10 −5 , for Q 2 >0.01 GeV 2 . The ratio is consistent with unity throughout this new range.
No description provided.
No description provided.
The search for an additional heavy gauge boson Z′ is described. The models considered are based on either a superstring-motivated E 6 or on a left-right symmetry and assume a minimal Higgs sector. Cross sections and asymmetries measured with the L3 detector in the vicinity of the Z resonance during the 1990 and 1991 running periods are used to determine limits on the Z-Z′ gauge boson mixing angle and on the Z′ mass. For Z′ masses above the direct limits, we obtain the following allowed ranges of the mixing angle, θ M at the 95% confidence level: −0.004 ⪕ θ M ⪕ 0.015 for the χ model, −0.003 ⪕ θ M ⪕ 0.020 for the ψ model, −0.029 ⪕ θ M ⪕ 0.010 for the η model, −0.002 ⪕ θ M ⪕ 0.020 for the LR model,
Data taken during 1990.
Data taken during 1991.
Data taken during 1990.
Measurements of the total and differential cross sections of the reaction p p → K s K s are presented for values of s in the region near 2230 MeV. The 18 energies of the scan were chosen to permit a sensitive search for resonant structure related to the ¢E(2230) state in a channel with a minimal non-resonant background. No such structure is observed. Stringent limits for the branching ratio are set based on various assumptions for the width and spin of the ¢E.
No description provided.
No description provided.
Legendre polynomial fit to dsig/domega to order 0.
We report on the first measurement of the spin-dependent structure function g 1 d of the deuteron in the deep inelastic scattering of polarised muons off polarised deuterons, in the kinematical range 0.006< x <0.6, 1 GeV 2 < Q 2 <30 GeV 2 . The first moment, Γ 1 d =ʃ 0 1 g 1 d d x=0.023±0.020 ( stat. ) ± 0.015 ( syst. ) , is smaller than the prediction of the Ellis-Jaffe sum rules. Using earlier measurements of g 1 p , we infer the first moment of the spin-dependent neutron structure function g 1 n . The difference Γ 1 p − Γ 1 n =0.20±0.05 (stat.) ± 0.04 (syst.) agrees with the prediction of the Bjorken sum rule, Γ 1 p − Γ 1 n =0.191±0.002.
Virtual photon asymmetry A1.
Spin-dependent structure function G1.