A comparison is made of the low-mass three-meson systems (πππ), (Kππ), (π K K ) and ( K K K ) diffractively produced in the reaction meson + proton → three mesons + proton. Several striking similarities and a few important differences are observed: (i) the reactions are consistent with the assumption that the three mesons decay entirely into a 0 − meson and a 0 + , 1 − or 2 + resonance; (ii) the three-meson mass spectra have a peak ≈ 250 MeV above the effective threshold M eff of the dominant decay mode and then fall off approximately as (mass) −3 ;(iii) the average spin 〈 J 〉 = 0.55 + 1.1 Q eff , where Q eff = M - M eff ; (iv) the average orbital angular momentum 〈 l 〉 increases according to 〈 l 〉 = 0.75 Q eff ; (v) the three-meson states are produced dominantly in unnatural spin-parity states and no evidence for their being resonant is found; (vi) the only natural spin-parity states found are the well-established 2 + resonances A 2 and K ∗ (1420); they have similar properties to the non-resonant unnatural parity states except for a dip at t = 0 in the dσ/d t distributions; (vii) both the unnatural and natural spin-parity states are produced mostly by an exchange of natural parity; (viii) there is evidence for two types of production mechanism with different polarization properties, one approximately conserving helicity in the t -channel and the other in the s -channel.
The reaction π + p→ ωΔ ++ (1236) is studied at 16 GeV/ c . Cross section, differential cross section, single and joint spin-density matrix elements are given and the correlations between the ε and Δ ++ (1236) decay angular distributions are investigated. Natural and unnatural spin-parity exchanges contribute to this reaction in roughly equal amounts. Natural exchanges lead predominantly to Δ ++ (1236) with helicity ± 3 2 , while unnatural exchanges lead predominantly to Δ ++ (1236) with helicity ± 1 2 and to ε with helicity zero. Furthermore, unnatural exchanges are small at t ′≅0.2 GeV 2 compared to other t ′ values, which may be due to the nonsense wrong-signature-zero of the B-meson exchange. Quark model relations are found to be satisfied by the data.
A study of the reaction π + p → p π + π o at 16 GeV/ c incident momentum has been made using the prism plot analysis to reject background events arising from elastic and multineutral contaminations and to separate different reaction channels ( ϱ + p, g + p, Δ + π + , Δ ++ π o , π + (p π o ) DD ). Cross sections, invariant mass distributions and production and decay angular distributions are presented. For the channel corresponding to proton diffraction dissociation strong violation of both s - and t -channel helicity conservation is found for low values of the (p π o ) mass. We demonstrate that the prism plot method provides a better separation of background events than conventional methods using kinematic cuts.
Multiplicity distributions and correlations between charged particles in the forward and back-ward c.m. hemispheres are studied inK−p interactions at 110 GeV/c and compared with other data on mesonnucleon scattering. The interpretation in terms of a simple quark-parton picture assuming that the forward multiplicity is dominated by quark fragmentation and the backward multiplicity by diquark fragmentation is supported by the experimental fact that the forward and the backward mean multiplicities are approximately equal to half of thee+e− andpp multiplicities, respectively. The 110 GeV/cK−p data show significant correlations between the numbers of slow forward and slow backward particles, whereas the multiplicities of fast forward and fast backward particles are independent.
None
THESE DATA ARE TABULATED IN THE RECORD OF THE PUBLISHED VERSION.
FROM QUADRATIC EXPONENTIAL FITS TO D(SIG)/DT FOR -T = 0 TO 1.4 GEV**2. SYSTEMATIC ERRORS INCLUDED.
None
The reaction π + p → ϱ 0 Δ ++ (1236) at 16 GeV/ c has been studied. Cross section, differential cross section, single and joint spin-density matrix elements are given. Correlations between the ϱ 0 and Δ ++ (1236) decay distributions are observed. Unnatural spin-parity exchanges, mainly observed at small t ' values, dominate the ϱ 0 Δ ++ (1236) production. The natural exchange contributions are only (7 ± 2)% and become as important as the unnatural exchanges beyond t ' = 0.3 GeV 2 . Contributions to Δ ++ (1236) helicity 3 2 states do not exceed 20% of the total ϱ 0 Δ ++ (1236) cross section and are mainly due to unnatural exchanges.
The inclusive production of Σ + (1385) and Σ − (1385) has been studied in K − p interactions at 10 and 10 and 16 GeV/ c . It is found that the cross sections for the reactions K − p → Σ ± (1385) + anything are approximately constant in the energy range form 10 to 32 GeV/ c , being ≈ 350 μ b for Σ + (1385) and ≈ 250 μ b for Σ − (1385). The d σ d p ⊥ 2 distributions for Σ ± (1385) fall off exponentially with increasing p ⊥ 2 , with sloped of about 3 (GeV/ c ) −2 . The d σ /d x distributions for Σ + (1385) and Σ − (1385) are markedly different: the production of Σ − (1385) is symmetrical forwards and backwards in the c.m.s.; for Σ + (1385), the distribution is the same as for Σ − (1385) in the forward direction, but presents a large excess of events in the backward direction. This indicates that for the production of both Σ + (1385) and Σ − (1385) the fragmentation of the incoming kaon is negligible. The fragmentation of the target proton is negligible for Σ − (1385), but it is important for Σ + (1385) and is responsible for the excess (∼100 μ b) of its cross section over that for Σ − (1385).
None
CROSS-OVER IS AT -T = 0.17 +- 0.02 GEV**2. DIVIDE BY 20 TO GET D(SIG)/DT IN MB/GEV**2. CORRECTED FOR LOST EVENTS FOR -T < 0.12 GEV**2.
FROM QUADRATIC EXPONENTIAL FIT TO D(SIG)/DT. BOTH STATISTICAL AND SYSTEMATIC ERRORS INCLUDED IN VALUES.
Results are presented on elastic scattering of 10.1 GeV/ c K − mesons on protons, based on a sample of 16 261 kinematically-fitted bubble-chamber events. The differential cross section is given over the | t |- range of 0.06 to 2.5 GeV 2 and is fitted with the expressions a e bt , A e Bt + Ct 2 and ( P e Qt + Re St ) over various intervals of t . The results are compared with those of other experiments at nearby energies. Upper limits of | α | < 0.28 and σ B < 0.4 μ b (both at a 90% confidence level) are given for the ratio of real to imaginary part of the forward-scattering amplitude and the backward-elastic-scattering cross section, respectively.
No description provided.
ERROR INCLUDES STATISTICAL ERROR AND ERROR IN TOTAL CROSS SECTION USED FOR NORMALIZATION. EXTRAPOLATION OF D(SIG)/DT TO T=0 PROVIDES ABOUT 0.5 PCT UNCERTAINTY.
NO BACKWARD EVENTS OBSERVED. LARGEST ANGLE EVENT SEEN WAS AT 64 DEG (-T = 2.33 GEV**2).