Search for lepton-flavor-violation in $Z$-boson decays with $\tau$-leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.Lett. 127 (2022) 271801, 2022.
Inspire Record 1865746 DOI 10.17182/hepdata.105516

A search for lepton-flavor-violating $Z\to e\tau$ and $Z\to\mu\tau$ decays with $pp$ collision data recorded by the ATLAS detector at the LHC is presented. This analysis uses 139 fb$^{-1}$ of Run 2 $pp$ collisions at $\sqrt{s}=13$ TeV and is combined with the results of a similar ATLAS search in the final state in which the $\tau$-lepton decays hadronically, using the same data set as well as Run 1 data. The addition of leptonically decaying $\tau$-leptons significantly improves the sensitivity reach for $Z\to\ell\tau$ decays. The $Z\to\ell\tau$ branching fractions are constrained in this analysis to $\mathcal{B}(Z\to e\tau)<7.0\times10^{-6}$ and $\mathcal{B}(Z\to \mu\tau)<7.2\times10^{-6}$ at 95% confidence level. The combination with the previously published analyses sets the strongest constraints to date: $\mathcal{B}(Z\to e\tau)<5.0\times10^{-6}$ and $\mathcal{B}(Z\to \mu\tau)<6.5\times10^{-6}$ at 95% confidence level.

16 data tables

The best-fit predicted and observed distributions of the combined NN output in the low-$p_\text{T}$-SR for the $e\tau_\mu$ channel. The first and last bin include underflow and overflow events, respectively.

The best-fit predicted and observed distributions of the combined NN output in the low-$p_\text{T}$-SR for the $\mu\tau_e$ channel. The first and last bin include underflow and overflow events, respectively.

The best-fit predicted and observed distributions of the combined NN output in the high-$p_\text{T}$-SR for the $e\tau_\mu$ channel. The first and last bin include underflow and overflow events, respectively.

More…

First Measurement of the Muon Neutrino Charged Current Single Pion Production Cross Section on Water with the T2K Near Detector

The T2K collaboration Abe, K. ; Andreopoulos, C. ; Antonova, M. ; et al.
Phys.Rev.D 95 (2017) 012010, 2017.
Inspire Record 1465650 DOI 10.17182/hepdata.73182

The T2K off-axis near detector, ND280, is used to make the first differential cross section measurements of muon neutrino charged current single positive pion production on a water target at energies ${\sim}0.8$ GeV. The differential measurements are presented as a function of muon and pion kinematics, in the restricted phase-space defined by $p_{\pi^+}>200$MeV/c, $p_{\mu^-}>200$MeV/c, $\cos \theta_{\pi^+}>0.3$ and $\cos \theta_{\mu^-}>0.3$. The total flux integrated $\nu_\mu$ charged current single positive pion production cross section on water in the restricted phase-space is measured to be $\langle\sigma\rangle_\phi=4.25\pm0.48 (\mathrm{stat})\pm1.56 (\mathrm{syst})\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}$. The total cross section is consistent with the NEUT prediction ($5.03\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}$) and 2$\sigma$ lower than the GENIE prediction ($7.68\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}$). The differential cross sections are in good agreement with the NEUT generator. The GENIE simulation reproduces well the shapes of the distributions, but over-estimates the overall cross section normalization.

8 data tables

Total $\nu_\mu$ CC1$\pi^+$ cross section on water in the reduced phase-space of $p_{\pi^+} > 200$ MeV/$c$, $p_\mu > 200$ MeV/c, $\cos(\theta_{\pi^+}) > 0.3$ and $\cos(\theta_\mu) > 0.3$. The T2K data point is placed at the $\nu_\mu$ flux mean energy.

Unfolded $\nu_\mu$ CC1$\pi^+$ differential cross section as a function of $p_\pi$ in the reduced phase-space of $p_{\pi^+} > 200$ MeV/$c$, $p_\mu > 200$ MeV/c, $\cos(\theta_{\pi^+}) > 0.3$ and $\cos(\theta_\mu) > 0.3$.

Unfolded $\nu_\mu$ CC1$\pi^+$ differential cross section as a function of $\cos\theta_\pi$ in the reduced phase-space of $p_{\pi^+} > 200$ MeV/$c$, $p_\mu > 200$ MeV/c, $\cos(\theta_{\pi^+}) > 0.3$ and $\cos(\theta_\mu) > 0.3$.

More…

Parity-Nonconserving Optical Rotation at 876 nm in Bismuth

Macpherson, M.J. ; Stacey, D.N. ; Baird, P.E.G. ; et al.
EPL 4 (1987) 811-816, 1987.
Inspire Record 1408819 DOI 10.17182/hepdata.70515

We have measured parity-nonconserving optical rotation in the vicinity of the M1 absorption transition at 876 nm in bismuth. The result, R = Im(E1PNC/M1) = (-10.0 ± 1.0) centerdot 10-8, is in agreement with calculations based on the standard model of the electroweak interaction. The predicted form of the PNC rotation spectrum has been verified to high accuracy.

1 data table

No description provided.


Measurement of the muon neutrino inclusive charged-current cross section in the energy range of 1-3 GeV with the T2K INGRID detector

The T2K collaboration Abe, K. ; Andreopoulos, C. ; Antonova, M. ; et al.
Phys.Rev.D 93 (2016) 072002, 2016.
Inspire Record 1394549 DOI 10.17182/hepdata.80058

We report a measurement of the $\nu_{\mu}$-nucleus inclusive charged current cross section (=$\sigma^{cc}$) on iron using data from exposed to the J-PARC neutrino beam. The detector consists of 14 modules in total, which are spread over a range of off-axis angles from 0$^\circ$ to 1.1$^\circ$. The variation in the neutrino energy spectrum as a function of the off-axis angle, combined with event topology information, is used to calculate this cross section as a function of neutrino energy. The cross section is measured to be $\sigma^{cc}(1.1\text{ GeV}) = 1.10 \pm 0.15$ $(10^{-38}\text{cm}^2/\text{nucleon})$, $\sigma^{cc}(2.0\text{ GeV}) = 2.07 \pm 0.27$ $(10^{-38}\text{cm}^2/\text{nucleon})$, and $\sigma^{cc}(3.3\text{ GeV}) = 2.29 \pm 0.45$ $(10^{-38}\text{cm}^2/\text{nucleon})$, at energies of 1.1, 2.0, and 3.3 GeV, respectively. These results are consistent with the cross section calculated by the neutrino interaction generators currently used by T2K. More importantly, the method described here opens up a new way to determine the energy dependence of neutrino-nucleus cross sections.

1 data table

Results of the $\nu_{\mu}$ CC inclusive cross section on Fe.


Measurement of parity non-conserving optical rotation in the 648 nm transition in atomic bismuth

Taylor, J.D. ; Baird, P.E.G. ; Hunt, R.G. ; et al.
J.Phys.B 20 (1987) 5423-5442, 1987.
Inspire Record 1393361 DOI 10.17182/hepdata.38568

Parity non-conserving (PNC) optical rotation has been measured by laser polarimetry in the 648 nm magnetic dipole transition (6p$^{3}J$=$\frac{3}{2}\rightarrow$6p$^{3}J'=\frac{5}{2}$) in atomic bismuth. The experiment involves finding the small differences in rotation between selected frequency points in the vicinity of the F = 6 $\rightarrow$ F' = 7 hyperfine component. Faraday rotation, which can be distinguished from PNC rotation by its wavelength dependence, is used in locking the laser frequency and calibrating the PNC' effect. Results obtained over a six-year period are summarised; a detailed discussion of error sources and associated tests is given. The final result for the PNC parameter of the 648 nm transition is R = (-9.3 $\pm$ 1.4)X10$^{-8}$. This is in agreement with the measurements of Birich et a/ but not with those of Barkov and Zolotorev. It is also consistent with the standard model of the electroweak interaction, but the uncertainty in the atomic theory is now the limiting factor in the comparison.

2 data tables

Axis error includes +- 0.0/0.0 contribution (?////).

Axis error includes +- 0.0/0.0 contribution (?////).


Measurement of the $\nu_\mu$ CCQE cross section on carbon with the ND280 detector at T2K

The T2K collaboration Abe, K. ; Adam, J. ; Aihara, H. ; et al.
Phys.Rev.D 92 (2015) 112003, 2015.
Inspire Record 1329784 DOI 10.17182/hepdata.72875

The Charged-Current Quasi-Elastic (CCQE) interaction, $\nu_{l} + n \rightarrow l^{-} + p$, is the dominant CC process at $E_\nu \sim 1$ GeV and contributes to the signal in accelerator-based long-baseline neutrino oscillation experiments operating at intermediate neutrino energies. This paper reports a measurement by the T2K experiment of the $\nu_{\mu}$ CCQE cross section on a carbon target with the off-axis detector based on the observed distribution of muon momentum ($p_\mu$) and angle with respect to the incident neutrino beam ($\theta_\mu$). The flux-integrated CCQE cross section was measured to be $(0.83 \pm 0.12) \times 10^{-38}\textrm{ cm}^{2}$ in good agreement with NEUT MC value of ${0.88 \times 10^{-38}} \textrm{ cm}^{2}$. The energy dependence of the CCQE cross section is also reported. The axial mass, $M_A^{QE}$, of the dipole axial form factor was extracted assuming the Smith-Moniz CCQE model with a relativistic Fermi gas nuclear model. Using the absolute (shape-only) $p_{\mu}cos\theta_\mu$ distribution, the effective $M_A^{QE}$ parameter was measured to be ${1.26^{+0.21}_{-0.18} \textrm{ GeV}/c^{2}}$ (${1.43^{+0.28}_{-0.22} \textrm{ GeV}/c^{2}}$).

2 data tables

The measured CCQE energy-dependent cross section per target neutron.

The fractional covariance matrix corresponding to the errors shown in Figure 7.


Search for neutrino emission from relic dark matter in the Sun with the Baikal NT200 detector

The Baikal collaboration Avrorin, A.D. ; Avrorin, A.V. ; Aynutdinov, V.M. ; et al.
Astropart.Phys. 62 (2015) 12-20, 2015.
Inspire Record 1296058 DOI 10.17182/hepdata.64126

We have analyzed a data set taken over 2.76 years live time with the Baikal neutrino telescope NT200. The goal of the analysis is to search for neutrinos from dark matter annihilation in the center of the Sun. Apart from the conventional annihilation channels $b\bar{b}$, $W^+W^-$ and $\tau^+\tau^-$ we consider also the annihilation of dark matter particles into monochromatic neutrinos. From the absence of any excess of events from the direction of the Sun over the expected background, we derive 90% upper limits on the fluxes of muons and muon neutrinos from the Sun, as well as on the elastic cross sections of dark matter scattering on protons.

6 data tables

Process: DM DM --> BOTTOM BOTTOMBAR. Half-cone angle GAMMA, 90% upper limit N(SIGNAL) on the number of signal events, the muon flux PHI(MU), the dark matter annihilation rate in the Sun GAMMA(ANN), the dark matter-proton spin-dependent SIG(SD) and spin-independent SIG(SI) scattering cross sections and neutrino flux PHI(NU).

Process: DM DM --> TAU+ TAU-. Half-cone angle GAMMA, 90% upper limit N(SIGNAL) on the number of signal events, the muon flux PHI(MU), the dark matter annihilation rate in the Sun GAMMA(ANN), the dark matter-proton spin-dependent SIG(SD) and spin-independent SIG(SI) scattering cross sections and neutrino flux PHI(NU).

Process: DM DM --> W+ W-. Half-cone angle GAMMA, 90% upper limit N(SIGNAL) on the number of signal events, the muon flux PHI(MU), the dark matter annihilation rate in the Sun GAMMA(ANN), the dark matter-proton spin-dependent SIG(SD) and spin-independent SIG(SI) scattering cross sections and neutrino flux PHI(NU).

More…

Measurement of the W -> lnu and Z/gamma* -> ll production cross sections in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
JHEP 12 (2010) 060, 2010.
Inspire Record 872570 DOI 10.17182/hepdata.56744

First measurements of the W -> lnu and Z/gamma* -> ll (l = e, mu) production cross sections in proton-proton collisions at sqrt(s) = 7 TeV are presented using data recorded by the ATLAS experiment at the LHC. The results are based on 2250 W -> lnu and 179 Z/gamma* -> ll candidate events selected from a data set corresponding to an integrated luminosity of approximately 320 nb-1. The measured total W and Z/gamma*-boson production cross sections times the respective leptonic branching ratios for the combined electron and muon channels are $\stotW$ * BR(W -> lnu) = 9.96 +- 0.23(stat) +- 0.50(syst) +- 1.10(lumi) nb and $\stotZg$ * BR(Z/gamma* -> ll) = 0.82 +- 0.06(stat) +- 0.05(syst) +- 0.09(lumi) nb (within the invariant mass window 66 < m_ll < 116 GeV). The W/Z cross-section ratio is measured to be 11.7 +- 0.9(stat) +- 0.4(syst). In addition, measurements of the W+ and W- production cross sections and of the lepton charge asymmetry are reported. Theoretical predictions based on NNLO QCD calculations are found to agree with the measurements.

35 data tables

Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.

Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nubar final state.

Measured fiducial cross section times leptonic branching ratio for W+/- production in the combined W+ -> e+ nu and W- -> e- nubar final state.

More…

Search for Quark Contact Interactions in Dijet Angular Distributions in pp Collisions at sqrt(s) = 7 TeV Measured with the ATLAS Detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Lett.B 694 (2011) 327-345, 2011.
Inspire Record 871487 DOI 10.17182/hepdata.57022

Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\chi$ distributions excludes quark contact interactions with a compositeness scale $\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.

5 data tables

CHI distribution for mass bin 340 to 520 GeV.

CHI distribution for mass bin 520 to 800 GeV.

CHI distribution for mass bin 800 to 1200 GeV.

More…

Search for New Particles in Two-Jet Final States in 7 TeV Proton-Proton Collisions with the ATLAS Detector at the LHC

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Rev.Lett. 105 (2010) 161801, 2010.
Inspire Record 865423 DOI 10.17182/hepdata.57036

A search for new heavy particles manifested as resonances in two-jet final states is presented. The data were produced in 7 TeV proton-proton collisions by the Large Hadron Collider (LHC) and correspond to an integrated luminosity of 315 nb^-1 collected by the ATLAS detector. No resonances were observed. Upper limits were set on the product of cross section and signal acceptance for excited-quark (q*) production as a function of q* mass. These exclude at the 95% CL the q* mass interval 0.30 < mq* < 1.26 TeV, extending the reach of previous experiments.

2 data tables

The dijet mass distribution (NUMBER OF EVENTS).

95 PCT CL upper limit of the cross section x acceptance.


Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Eur.Phys.J.C 71 (2011) 1512, 2011.
Inspire Record 871366 DOI 10.17182/hepdata.56004

Jet cross sections have been measured for the first time in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector. The measurement uses an integrated luminosity of 17 nb-1 recorded at the Large Hadron Collider. The anti-kt algorithm is used to identify jets, with two jet resolution parameters, R = 0.4 and 0.6. The dominant uncertainty comes from the jet energy scale, which is determined to within 7% for central jets above 60 GeV transverse momentum. Inclusive single-jet differential cross sections are presented as functions of jet transverse momentum and rapidity. Dijet cross sections are presented as functions of dijet mass and the angular variable $\chi$. The results are compared to expectations based on next-to-leading-order QCD, which agree with the data, providing a validation of the theory in a new kinematic regime.

26 data tables

Inclusive jet double-differential cross sections in the |rapidity| range 0 to 0.3, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.

Inclusive jet double-differential cross sections in the |rapidity| range 0.3 to 0.8, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.

Inclusive jet double-differential cross sections in the |rapidity| range 0.8 to 1.2, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.

More…

Charged-particle multiplicities in pp interactions at sqrt(s) = 900 GeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, G. ; Abat, E. ; Abbott, B. ; et al.
Phys.Lett.B 688 (2010) 21-42, 2010.
Inspire Record 849050 DOI 10.17182/hepdata.54850

The first measurements from proton-proton collisions recorded with the ATLAS detector at the LHC are presented. Data were collected in December 2009 using a minimum-bias trigger during collisions at a centre-of-mass energy of 900 GeV. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between mean transverse momentum and charged-particle multiplicity are measured for events with at least one charged particle in the kinematic range |eta|<2.5 and pT>500 MeV. The measurements are compared to Monte Carlo models of proton-proton collisions and to results from other experiments at the same centre-of-mass energy. The charged-particle multiplicity per event and unit of pseudorapidity at eta = 0 is measured to be 1.333 +/- 0.003 (stat.) +/- 0.040 (syst.), which is 5-15% higher than the Monte Carlo models predict.

5 data tables

Average value of charged particle multiplicity per event and unit of pseudorapidity in the pseudorapidity range from -0.2 to 0.2.

Charged particle multiplicity as a function of pseudorapidity.

Charged particle multiplicity as a function of transverse momentum.

More…

Photon electroproduction from hydrogen at backward angles and momentum transfer squared of Q**2 = 1.0-GeV**2.

The JLab Hall A collaboration Laveissiere, G. ; Degrande, N. ; Jaminion, S. ; et al.
JLAB-PHY-04-34, 2004.
Inspire Record 652965 DOI 10.17182/hepdata.38623

We have made the first measurements of the virtual Compton scattering process via the e p -> e p gamma exclusive reaction at Q**2 = 1 GeV**2 in the nucleon resonance region. The cross section is obtained at center of mass (CM) backward angle, theta_gamma_gamma*, in a range of total (gamma* p) CM energy W from the proton mass up to W = 1.91 GeV. The data show resonant structures in the first and second resonance regions, and are well reproduced at higher W by the Bethe-Heitler+Born cross section, including t-channel pi0-exchange. At high W, our data, together with existing real photon data, show a striking Q**2 independence. Our measurement of the ratio of H(e,e'p)gamma to H(e,e'p)pi0 cross sections is presented and compared to model predictions.

18 data tables

Cross section for the reaction E P --> E P GAMMA at a polar angle given by COS(THETA) = -0.975 and azimuthal angle PHI = 15 degrees both in the centre-of-mass frame of the GAMMA* P --> GAMMA* P reaction.

Cross section for the reaction E P --> E P GAMMA at a polar angle given by COS(THETA) = -0.975 and azimuthal angle PHI = 45 degrees both in the centre-of-mass frame of the GAMMA* P --> GAMMA* P reaction.

Cross section for the reaction E P --> E P GAMMA at a polar angle given by COS(THETA) = -0.975 and azimuthal angle PHI = 75 degrees both in the centre-of-mass frame of the GAMMA* P --> GAMMA* P reaction.

More…

Production of pi+, pi-, K+, K-, p and anti-p in light (uds), c and b jets from Z0 decays.

The SLD collaboration Abe, Koya ; Abe, Kenji ; Abe, T. ; et al.
Phys.Rev.D 69 (2004) 072003, 2004.
Inspire Record 630327 DOI 10.17182/hepdata.22177

We present improved measurements of the differential production rates of stable charged particles in hadronic Z0 decays, and of charged pions, kaons and protons identified over a wide momentum range using the SLD Cherenkov Ring Imaging Detector. In addition to flavor-inclusive Z0 decays, measurements are made for Z0 decays into light (u, d, s), c and b primary flavors, selected using the upgraded Vertex Detector. Large differences between the flavors are observed that are qualitatively consistent with expectations based upon previously measured production and decay properties of heavy hadrons. These results are used to test the predictions of QCD in the Modified Leading Logarithm Approximation, with the ansatz of Local Parton-Hadron Duality, and the predictions of three models of the hadronization process. The light-flavor results provide improved tests of these predictions, as they do not include the contribution of heavy-hadron production and decay; the heavy-flavor results provide complementary model tests. In addition we have compared hadron and antihadron production in light quark (as opposed to antiquark) jets. Differences are observed at high momentum for all three charged hadron species, providing direct probes of leading particle effects, and stringent constraints on models.

11 data tables

Production rates of all stable charged particles. The statistical and systematic errors are shown separately for the momentum distribution. They are combined in quadrature for the other two distributions. The first DSYS error is due tothe uncertainty in the track finding efficiency and the second DSYS error is th e rest of the systematic error.

The charged pion fraction and differential production rate per hadronic Z0 decay.

The charged kaon fraction and differential production rate per hadronic Z0 decay.

More…

Backward electroproduction of pi0 mesons on protons in the region of nucleon resonances at four momentum transfer squared Q**2 = 1.0-GeV**2.

The JLab Hall A collaboration Laveissiere, G. ; Degrande, N. ; Jaminion, S. ; et al.
Phys.Rev.C 69 (2004) 045203, 2004.
Inspire Record 625669 DOI 10.17182/hepdata.25226

Exclusive electroproduction of pi0 mesons on protons in the backward hemisphere has been studied at Q**2 = 1.0 GeV**2 by detecting protons in the forward direction in coincidence with scattered electrons from the 4 GeV electron beam in Jefferson Lab's Hall A. The data span the range of the total (gamma* p) center-of-mass energy W from the pion production threshold to W = 2.0 GeV. The differential cross sections sigma_T+epsilon*sigma_L, sigma_TL, and sigma_TT were separated from the azimuthal distribution and are presented together with the MAID and SAID parametrizations.

12 data tables

Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.975.

Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.925.

Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.875.

More…

Measurement of the b-quark fragmentation function in Z0 decays.

The SLD collaboration Abe, Koya ; Abe, Kenji ; Abe, T. ; et al.
Phys.Rev.D 65 (2002) 092006, 2002.
Inspire Record 582951 DOI 10.17182/hepdata.72835

We present a measurement of the b-quark inclusive fragmentation function in Z0 decays using a novel kinematic B-hadron energy reconstruction technique. The measurement was performed using 350,000 hadronic Z0 events recorded in the SLD experiment at SLAC between 1997 and 1998. We compared the sacled B-hadron energy distribution with models of b-quark fragmentation and with several ad hoc functional forms. A number of models and functions are excluded by the data. The average scaled energy of weakly-decaying B hadrons was measured to be <x_B>= 0.709 +-0.003 (stat) +-0.003 (syst) +-0.002 (model).

2 data tables

DATA FROM THE ERRATUM (PR D66,079905,2002). Measurement of the fragmentation function of weakly decaying B-hadrons in Z0 decays. First systematic (DSYS) error is the systematic error, the second is the estimated error due to the model dependence of the unfolding procedure.

DATA FROM ORIGINAL PAPER, SUPERSEDED BY ERRATUM (SEE ABOVE TABLE). Measurement of the fragmentation function of weakly decaying B-hadrons in Z0 decays. First systematic (DSYS) error is the systematic error, the second is the estimated error due to the model dependence of the unfolding procedure.


Measurement of j / psi production in continuum e+ e- annihilations near s**(1/2) = 10.6-GeV

The BaBar collaboration Aubert, Bernard ; Boutigny, D. ; Gaillard, J.M. ; et al.
Phys.Rev.Lett. 87 (2001) 162002, 2001.
Inspire Record 558091 DOI 10.17182/hepdata.19450

The production of $J/\psi$ mesons in continuum $e^+e^-$ annihilations has been studied with the BABAR detector at energies near the $\Upsilon(4S)$ resonance, approximately 10.6 GeV. The mesons are distinguished from $J/\psi$ production in B decays through their center-of-mass momentum and energy. We measure the cross section $e^+e^-\to J/\psi X$ to be $2.52\pm 0.21\pm 0.21$ pb: for momentum above 2 GeV/c, it is $1.87\pm 0.10\pm 0.15$ pb. We set a 90% confidence level upper limit on the branching fraction for direct $\Upsilon(4S)$\to J/\psi X$ decays at $4.7\times 10^{-4}$.

1 data table

Cross section measurement.


Measurement of CP violating asymmetries in B0 decays to CP eigenstates

The BaBar collaboration Aubert, Bernard ; Boutigny, D. ; De Bonis, I. ; et al.
Phys.Rev.Lett. 86 (2001) 2515-2522, 2001.
Inspire Record 553002 DOI 10.17182/hepdata.50471

We present measurements of time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurement uses a data sample of 23 million Upsilon(4S)-->B-anti-B decays collected by the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we find events where one neutral B meson is fully reconstructed in a CP eigenstate containing charmonium and the flavor of the other neutral B meson is determined from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay time distributions in such events. The result is sin2beta=0.34 +/- 0.20 (stat) +/- 0.05 (syst).

1 data table

Standard Model predicts the time-dependent rate asymmetry as follows: A(t) = (B0(t)-BBAR0(t))/(B0(t)+BBAR0(t)) = SIN(2*BETA)*SIN(Delta(M)*t), where Delta(M) is the mass difference between the two B0 mass eigenstates. The total systematic error equals +0.50 -0.46.


Improved measurement of the probability for gluon splitting into b anti-b in Z0 decays.

The SLD collaboration Abe, Koya ; Abe, Kenji ; Abe, T. ; et al.
Phys.Lett.B 507 (2001) 61-69, 2001.
Inspire Record 552756 DOI 10.17182/hepdata.41701

We have measured gluon splitting into bottom quarks, g→b b ̄ , in hadronic Z 0 decays collected by SLD between 1996 and 1998. The analysis was performed by looking for secondary bottom production in 4-jet events of any primary flavor. 4-jet events were identified, and in each event a topological vertex-mass technique was applied to the two jets closest in angle in order to identify them as b or b ̄ jets. The upgraded CCD-based vertex detector gives very high B -tagging efficiency, especially for B hadrons with the low energies typical of this process. We measured the rate of g→b b ̄ production per hadronic event, g b b ̄ , to be (2.44±0.59(stat.)±0.34(syst.))×10 −3 .

1 data table

No description provided.


An improved direct measurement of leptonic coupling asymmetries with polarized Z bosons.

The SLD collaboration Abe, Koya ; Abe, Kenji ; Abe, T. ; et al.
Phys.Rev.Lett. 86 (2001) 1162-1166, 2001.
Inspire Record 534735 DOI 10.17182/hepdata.41720

We present final measurements of the Z boson-lepton coupling asymmetry parameters Ae, Amu, and Atau with the complete sample of polarized Z bosons collected by the SLD detector at the SLAC Linear Collider. From the left-right production and decay polar angle asymmetries in leptonic Z decays we measure Ae = 0.1544 +- 0.0060, Amu = 0.142 +- 0.015, and Atau = 0.136 +- 0.015. Combined with our left-right asymmetry measured from hadronic decays, we find Ae = 0.1516 +- 0.0021. Assuming lepton universality, we obtain a combined effective weak mixing angle of sin**2 theta^{eff}_W = 0.23098 +- 0.00026.

1 data table

No description provided.


Measurement of A(c) with charmed mesons at SLD.

The SLD collaboration Abe, Kenji ; Abe, Koya ; Abe, Toshinori ; et al.
Phys.Rev.D 63 (2001) 032005, 2001.
Inspire Record 533573 DOI 10.17182/hepdata.41721

We present a direct measurement of the parity-violation parameter $A_c$ in the coupling of the $Z^0$ to $c$-quarks with the SLD detector. The measurement is based on a sample of 530k hadronic $Z^0$ decays, produced with a mean electron-beam polarization of $|P_e| = 73 %$. The tagging of $c$-quark events is performed using two methods: the exclusive reconstruction of $D^{\ast+}$, $D^+$, and $D^0$ mesons, and the soft-pions ($\pi_s$) produced in the decay of $D^{\ast+}\to D^0 \pi_s^+$. The large background from $D$ mesons produced in $B$ hadron decays is separated efficiently from the signal using precision vertex information. The combination of these two methods yields $A_c = 0.688 \pm 0.041.$

1 data table

CONST(NAME=A_C) is connected with the forward-backward asymmetry by following way: ASYM(NAME=FB) = ABS(P_e)*CONST(NAME=A_C)*2z/(1 + z**2), where z = cos(theta), theta is the polar angle of the outgoing fermion relative to the incident electron, P_e is the longitudinal polarization of the electron beam. Two values for constant A_c were obtained using two different c-quark tagging methods: exclusive charmed-meson reconstruction (C=EXCLUSIVE) and inclusive soft-pion analysis (C=SOFT_PIONS).


First direct measurement of the parity-violating coupling of the Z0 to the s-quark.

The SLD collaboration Abe, Koya ; Abe, Kenji ; Abe, T. ; et al.
Phys.Rev.Lett. 85 (2000) 5059-5063, 2000.
Inspire Record 528730 DOI 10.17182/hepdata.41736

We have made the first direct measurement of the parity-violating coupling of the Z^0 boson to the strange quark, A_s, using ~550,000 e^+e^- ->Z^0->hadrons events produced with a polarized electron beam and recorded by the SLD experiment. Z^0 -> s-sbar events were tagged by the absence of B or D hadrons and the presence in each hemisphere of a high-momentum K^+- or K^0_s. From the polar angle distributions of the strangeness-signed thrust axis, we obtained A_s=0.895+-0.066(stat.)+-0.062(syst.). The analyzing power and u-ubar plus d-dbar background were constrained using the data.

1 data table

No description provided.


A high-precision measurement of the left-right Z boson cross-section asymmetry.

The SLD collaboration Abe, Kenji ; Abe, Koya ; Abe, T. ; et al.
Phys.Rev.Lett. 84 (2000) 5945-5949, 2000.
Inspire Record 526448 DOI 10.17182/hepdata.35323

We present a measurement of the left-right cross-section asymmetry (ALR) for Z boson production by e+e- collisions. The measurement includes the final data taken with the SLD detector at the SLAC Linear Collider (SLC) during the period 1996-1998. Using a sample of 383,487 Z decays collected during the 1996-1998 runs we measure the pole-value of the asymmetry, ALR0, to be 0.15056+-0.00239 which is equivalent to an effective weak mixing angle of sin2th(eff) = 0.23107+-0.00030. Our result for the complete 1992-1998 dataset comprising 537 thousand Z decays is sin2th(eff) = 0.23097+-0.00027.

6 data tables

The observed, corrected asymmetry measurement using the 1997-98 data sets.

The observed, corrected asymmetry measurement using the 1996 data sets.

The pole asymmetry for the 1997-98 data sets.

More…

Multiplicity of charged secondaries emitted in association with neutral strange particles in antiproton nucleus collisions at 40-GeV/c.

Akhobadze, K.G. ; Grigalashvili, T.S. ; Chikovani, L.D. ; et al.
Phys.Atom.Nucl. 63 (2000) 834-838, 2000.
Inspire Record 533010 DOI 10.17182/hepdata.31228

In collisions of 40-GeV/c antiprotons with D, Li, C, S, Cu, and Pb nuclei, mean multiplicities of various secondary particles are investigated as functions of the mass number A. The mass-number dependence of the mean multiplicities of positively charged particles suggests that the effect of intranuclear cascades is strong for the emission of Λ hyperons, but that it is relatively weak for the emission of either K 0 or \(\bar \Lambda \). Also measured are the yields of various neutral strange particles with respect to those of charged secondaries.

24 data tables

No description provided.

No description provided.

No description provided.

More…

Precise measurement of the b-quark fragmentation function in Z0 boson decays.

The SLD collaboration Abe, Kenji ; Abe, Koya ; Abe, T. ; et al.
Phys.Rev.Lett. 84 (2000) 4300-4304, 2000.
Inspire Record 512427 DOI 10.17182/hepdata.19428

We have developed a new technique for inclusive reconstruction of the energy of B hadrons. The excellent efficiency and resolution of this technique allow us to make the most precise determination of the b-quark fragmentation function, using e+e- -> Z0 decays recorded in the SLD experiment at SLAC. We compared our measurement with the predictions of a number of fragmentation models. We excluded several of these models and measured the average scaled energy of weakly-decaying B hadrons to be <x_B>=0.714+-0.005(stat)+-0.007(syst) +-0.002(model dependence).

1 data table

Unfolded distribution of weakly decaying scaled B-hadron enery with statistical errors only.