Asymmetry of the cross section of the reaction $\gamma$P $\rightarrow$ P$\pi^{0}$ in the energy interval 0.9-1.65 GeV at $\theta _{\pi}^{0 cms}$ = 110°

Abramyan, L.O. ; Avakyan, R.O. ; Akopov, N.Z. ; et al.
JETP Lett. 23 (1976) 375-378, 1976.
Inspire Record 1393126 DOI 10.17182/hepdata.39803

None

2 data tables

THE ERRORS INCLUDE THE 10 PCT ERROR IN THE EFFECTIVE PHOTON POLARIZATION.

No description provided.


Discontinuous behaviour in large angle proton-proton elastic scattering at high energies

Allaby, J.V. ; Cocconi, G. ; Diddens, A.N. ; et al.
Phys.Lett.B 25 (1967) 156-159, 1967.
Inspire Record 1389227 DOI 10.17182/hepdata.754

Measurements of elastic proton-proton differential cross sections for angles between 65° and 90° c.m.s. have been made at 8, 9, 10, 11, 14, 15 and 21 GeV/c. The shape of the angular distribution is found to change suddenly between 8 and 11 GeV/c. An interpretation of this discontinuous behaviour in terms of the reactive effects of baryon-antibaryon pair production is proposed.

2 data tables

No description provided.

No description provided.


Elastic neutron scattering at 96 MeV from 12C and Pb-208

Klug, J. ; Blomgren, J. ; Atac, A. ; et al.
Phys.Rev.C 68 (2003) 064605, 2003.
Inspire Record 640465 DOI 10.17182/hepdata.25267

A facility for detection of scattered neutrons in the energy interval 50–130MeV, SCANDAL, has recently been installed at the 20–180MeV neutron beam line of the The Svedberg Laboratory, Uppsala. Elastic neutron scattering from C12 and Pb208 has been studied at 96MeV in the 10°–70° interval. The achieved energy resolution, 3.7MeV, is about an order of magnitude better than for any previous experiment above 65MeV incident energy. The present experiment represents the highest neutron energy where the ground state has been resolved from the first excited state in neutron scattering. A novel method for normalization of the absolute scale of the cross section has been used. The estimated normalization uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. The results are compared with modern optical model predictions based on phenomenology or microscopic nuclear theory.

2 data tables

Measured differential cross section for elastic scattering on PB208. The first DSYS systematic error is from the uncertainty in the contributions from multiple scattering corrections and the second DSYS refers to the cross section uncertainty due to the uncertainty in the angle measurement.

Measured differential cross section for elastic scattering on C12. The first DSYS systematic error is from the uncertainty in the contributions from multiple scattering corrections and the second DSYS refers to the cross section uncertainty due to the uncertainty in the angle measurement.


Determination of the e+ e- --> gamma gamma (gamma) cross-section at centre-of-mass energies ranging from 189-GeV to 202-GeV.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 491 (2000) 67-80, 2000.
Inspire Record 534257 DOI 10.17182/hepdata.49880

A test of the QED process e+e- -> gamma gamma (gamma) is reported. The data analysed were collected with the DELPHI detector in 1998 and 1999 at the highest energies achieved at LEP, reaching 202 GeV in the centre-of-mass. The total integrated luminosity amounts to 375.7 pb^{-1}. The differential and total cross-sections for the process e+e- -> gamma gamma were measured, and found to be in agreement with the QED prediction. 95% Confidence Level (C.L.) lower limits on the QED cut-off parameters of Lambda+ > 330 GeV and Lambda- > 320 GeV were derived. A 95% C.L. lower bound on the mass of an excited electron of 311 GeV/c^2 (for lambda_gamma = 1) was obtained. s-channel virtual graviton exchange was searched for, resulting in 95% C.L. lower limits on the string mass scale, M_S: M_S > 713 GeV/c^2 (lambda = 1) and M_S > 691 GeV/c^2 (lambda = -1).

7 data tables

No description provided.

No description provided.

No description provided.

More…

Sigma- p elastic scattering in the region of 400-MeV/c < p(Sigma-) < 700-MeV/c with a scintillating-fiber active target.

The KEK-PS-E289 collaboration Kondo, Y. ; Ahn, J.K. ; Akikawa, H. ; et al.
Nucl.Phys.A 676 (2000) 371-387, 2000.
Inspire Record 526176 DOI 10.17182/hepdata.36139

We have performed a hyperon-proton scattering experiment with a scintillating fiber active target. The Σ − p, Λ p and Σ + p scattering have been studied with the same experimental setup. In this paper, we present the differential cross sections of the Σ − p elastic scattering in the momentum region from 400 to 700 MeV /c . This is the first measurement of the Σ − p elastic scattering in the momentum region where the P- and higher waves contributions are important. The present data are in good agreement with the one boson exchange model (Bonn–Jülich model A) and the quark cluster model (FSS of Kyoto–Niigata model).

1 data table

No description provided.


Hard photon production and tests of QED at LEP

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 475 (2000) 198-205, 2000.
Inspire Record 513397 DOI 10.17182/hepdata.48965

The total and differential cross sections of the process e+e- -> n gamma with n >= 2 are measured using data collected by the L3 experiment at centre-of-mass energies of \sqrt{s}=183 and 189 GeV. The results are in agreement with the Standard Model expectations. Limits are set on deviations from QED, contact interaction cut-off parameters and masses of excited electrons.

2 data tables

Measured cross section.

Measured differential cross sections corrected for efficiency and additional photons as a function of cos(theta) where theta is the polar angle of the event defined as. cos(theta)=ABS((sin(theta1-theta2)/2)/(sin(theta1+theta2)/2)).


Measurement of the e+ e- --> gamma gamma (gamma) cross section at the LEP energies.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 433 (1998) 429-440, 1998.
Inspire Record 472952 DOI 10.17182/hepdata.49434

The total and the differential cross-sections for the reaction e + e − → γγ ( γ ) have been measured with the DELPHI detector at LEP at centre-of-mass energies from 130 to 183 GeV for an integrated luminosity of 78.19 pb −1 . The results agree with the QED predictions. The lower limits (obtained including previously published results at the Z 0 energies) on the QED cutoff parameters are Λ + >253 GeV and Λ − >225 GeV and the lower bound on the mass of an excited electron with an effective coupling constant λ γ =1 is 231 GeV/ c 2 . All the limits are at the 95% confidence level.

5 data tables

The cross section of the previously published data (sqrt(s)=91.25 GeV, see PL 327B, 386) is given at the mean of the CM energies weighted by the luminosityat each point.

Statistical errors only. Additional overall systematic uncertainty is givenabove.

Statistical errors only. Additional overall systematic uncertainty is givenabove.

More…

Observation of multiple hard photon final states at s**(1/2) = 130-GeV to 140-GeV at LEP.

The L3 collaboration Acciarri, M. ; Adam, A. ; Adriani, O. ; et al.
Phys.Lett.B 384 (1996) 96006120 323-332, 1996.
Inspire Record 418664 DOI 10.17182/hepdata.47566

We have studied the process e<sup loc="post">+</sup>e<sup loc="post">−</sup> → nγ (n ≥ 2) at an average center-of-mass energy of 133 GeV using the L3 detector at LEP. For an integrated luminosity of 4.95 pb<sup loc="post">−1</sup> we find one γγγγ(γ) final state with only hard photons. The rates of both γγγ and γγ events are consistent with QED expectations. The cross section of the reaction e<sup loc="post">+</sup>e<sup loc="post">−</sup> → γγ(γ) in the polar range 16° &lt; θγ < 164° is measured to be 22.6 ± 2.2 pb. Decays into photons of narrow scalar resonances with masses between 90 and 130 GeV are not observed. The observation of the event with four energetic photons is consistent with QED although the kinematic configuration of the photons is atypical.

2 data tables

Cross section for process E+ E- --> GAMMA GAMMA (GAMMA) with two hard photons.Error is purely statistical, systematic effects are neglected.

No description provided.


Tests of QED at LEP energies using e+ e- --> gamma gamma (gamma) and e+ e- --> lepton+ lepton- gamma gamma

The L3 collaboration Acciarri, M. ; Adam, A. ; Adriani, O. ; et al.
Phys.Lett.B 353 (1995) 136-144, 1995.
Inspire Record 394354 DOI 10.17182/hepdata.47938

Total and differential cross sections for the process e + e − → γγ ( γ ), and the total cross section for the process e + e − → γγγ , are measured at energies around 91 GeV using the data collected with the L3 detector from 1991 to 1993. We set lower limits, at 95% CL, on a contact interaction energy scale parameter Λ > 602 GeV, on the mass of an excited electron m e ∗ >146 GeV and on the QED cut-off parameters Λ + > 149 GeV and Λ _ > 143 GeV. Upper limits are also set o branching fractions of Z decaying into γγ , π ° and ηγ of 5.2 × 10 −5 , 5.2 × 10 −5 and 7.6 × 10 −5 respectively. The reactions e + e − → ℓ + ℓ − nγ (ℓ = e , μ , τ ) are studied using the data collected from 1990 to 1994. The data are consistent with the QED expectations.

3 data tables

No description provided.

No description provided.

No description provided.


High precision measurement of the $\overline{p}p \to \overline{n}n$ charge exchange differential cross-section

Birsa, R. ; Bradamante, F. ; Bressan, A. ; et al.
Phys.Lett.B 339 (1994) 325-331, 1997.
Inspire Record 382031 DOI 10.17182/hepdata.27114

The differential p p → n n charge-exchange cross section has been measured at the CERN Low Energy Antiproton Ring (LEAR), at two incident p momenta, 601 and 1202 MeV/c. features of the differential cross-section near the forward direction, i.e. a sharp peak at 0° scattering angle followed by an energy dependent dip-bump structure, are confirmed and measured with good precision and high statistical accuracy. The data show very clearly that the shape of the cross-section is a manifestation of the pion-exchange amplitude, and a simple extrapolation to the pion pole already indicates that the pion-nucleon coupling constant f c 2 can be determined with good precision.

2 data tables

No description provided.

Corrected with data from PL B405,389.